Efficient Compute Shader
Programming

Bill Bilodeau
AMD




Topics Covered in this Talk

= Direct Compute Overview
GPU Architecture

Compute Shader Optimization
GPUPerfStudio 2.5
Code Example: Gaussian Blur

Ambient Occlusion
Depth of Field
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Direct Compute

= DirectX interface for general purpose computing on
the GPU

General purpose computing can be done in a pixel
shader

Compute Shader advantages
More control over threads
Access to shared memory

No need to render any polygons
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Compute Shader Uses in Games

High quality filters
When 2x2 HW biliniar filtering isn’t good enough

Post Processing Effects
Screen space ambient occlusion
Depth of Field

Physics
= Al
Data Parallel Processing

Any algorithm that can be parallelized over a large
data set

AMDZ\
The future is fusion



Direct Compute Features

= Thread Groups
Threads can be grouped for compute shader execution
= Thread Group Shared Memory

Fast local memory shared between threads within the
thread group.
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GPU Archtecture Overview: HD6970
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GPU Archtecture Overview: Wavefronts

- GPU Time-slices execution
to hide latency

Wave 1 Wave 2 Wave 3 Wave 4

- 1 Wavefront = 4 waves
of threads per SP

- 16 SPs per SIMD, so
16 x 4 = 64 threads per
Wavefront

s



What does this mean for Direct Compute?

= Thread Groups
Threads are always executed in wavefronts on each SIMD

Thread group size should be a multiple of the wavefront
size (64)

Otherwise, [(Thread Group Size) mod 64] threads go
unused!

= Thread Group Shared Memory (LDS)
Limited to 32K per SIMD, so 32K per thead group

Memory is addressed in 32 banks. Addressing the same
location, or loc + (n x 32) may cause bank conflicts.

= \ectorize your compute shader code
4-way VLIW stream processors
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Optimization Considerations

= Know what it is you're trying to optimize
TEX, ALU

GPUPerfStudio and GPU Shader Analyzer can help with
this.

= Try lots of different configurations

Avoid hard-coding variables
Use GPUPerfStudio to edit in-place

= Avoid divergent dynamic flow control
Wastes shader processor cycles

= Know the hardware
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Example 1: Gaussian Blur

= Low-pass filter
Approximation of an ideal sync
Impulse Response in 2D:

1 222
h(xy) = 5o¢ =

= For images, implemented as a 2D discrete convolution

o o

fmn) = 2, 2 *i. 7] Al —i, 72— j]

Ijll-—u:l i-—u:.
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Optimization 1: Separable Gaussian Filter

= Some 2D filters can be separated in to independent
horizontal and vertical convolutions, i.e. “separable”

Can use separable passes even for non-separable filters
= Reduces to 1D filter with 1D convolutions:

h(X’y) p— ETTJE‘ 2

f(n) = D alk] hln—k)

—n

= Fewer TEX and ALU operations
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Typical Pipeline Steps

Source ' Intermediate Destination

RT RT RT

Horizontal Pass Vertical Pass
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Use Bilinear HW filtering?

Bilinear filter HW can halve the number of ALU and TEX
instructions

= Just need to compute the correct sampling offsets
Not possible with more advanced filters

= Usually because weighting is a dynamic operation

= Think about bilateral cases...
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Optimization 2: Thread Group Shared Memory

= Use the TGSM as a cache to reduce TEX and ALU ops
= Make sure thread group size is a multiple of 64

128 threads load 128 texels

VLUV LIV LT

l
BT T T TTITTITITII] .
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Kernel Radius

128 - ( Kernel Radius * 2 ) threads compute results

Redundant compute threads ®
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Avoid Redundant Threads

= Should ensure that all threads in a group have
useful work to do — wherever possible

= Redundant threads will not be reassigned work from
another group

= This would involve alot of redundancy for a large
kernel diameter
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A better use of Thread Group Shared Memory

Kernel Radius * 2 threads

128 threads load 128 texels load 1 extra texel each

J/ J/ \LV VvV V VvV VYV vV VV V VvV V v \l/ \l/ \L

<>

128 threads compute results
No redundant compute threads ©
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GPUPerfStudio: Separable Filter

File Windows Help

9©00:0000

Welcome ./ Frame Analyzer |
Frame Debugger | Profile GaussianBl..:44 AM |

‘.. Shader Linkage - /m Data | Options | Analysis | Info

[=-Hull Shader E =~
~Code ®|®Q@®‘ HLSL | Assembly D:;:-lﬂv:r"(]:ta\\ GP(lr':_lTs"Te CSThreads |—

A Torres 0000 0

- Active Textures
-~ Shader Linkage

[=-Domain Shader
Code // Loop counters

int i, j;

float4 f£4LDSValue;

float fWeights [KERNEL DIAMETER] ;
float fWeightSum = 0.0f;

Samplers

All Textures

- Active Textures
- Shader Linkage
=-Geometry Shader // Line, pixel, and LDS offsets from group thread IDs GPUTIime
Code int iPixelOffset = GTid.x ¥ PIXELS_PER THREAD; API Call D (ms)
Samplers int iLineoffset = GTid.y;
-~ All Textures arRenderTargetView 0.018
- Active Textures // Group, pixel, and clamped coords freom group IDs

- Shader Linkage int2 i2GroupCoord = int2( ( Gid.x * RUN_SIZE ) - KERNEL RADIUS, ( Gid.y “ RUN LINES )
-Pixel Shader int2 i2Coord = int2( i2GroupCoord.x + iPixelGffset, i2GroupCoord.y ); B

Code
- All Textures
- Active Textures X Y 7 w
- Shader Linkage
= Qutput Merger
Render States

Render Targets . oraw 3 9] o
~AllUAVS

- Depth Buffer -

Drawcall 3 { 33 (GPUTime: 0.5302 ms): Dispatch (8, 157, 1) _ 0.002

Dispatch

0.000000 0.000000 0.000000 0.000000

localhost GaussianBlurCS11.exe | Profile Completed

AMDY
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Optimization 3: Multiple Pixels per Thread

= Allows for natural vectorization
4 works well on AMD HW (OK for scalar hardware too)

= Possible to cache TGSM reads on General Purpose
Registers (GPRs)

Kernel Radius * 2 threads
32 threads load 128 texels load 1 extra texel each

T N T A N R g

BT TITT] .
—|

ol

32 threads compute 128 results
Compute threads not a multiple of 64 ®
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GPUPerfStudio: 4 Pixels Per Thread

File Windows Help

9©00:0000

Welcome ./ Frame Analyzer |
Frame Debugger | Profile GaussianBl..:44 AM |

‘.. Shader Linkage - /m Data | Options | Analysis | Info

[=-Hull Shader E =~
~Code ®|®Q@®‘ HLSL | Assembly D:;:-lﬂv:r"(]:ta\\ GP(lr':_lTs"Te CSThreads |—

A Torres 0000 0

- Active Textures
-~ Shader Linkage

[=-Domain Shader
Code // Loop counters

int i, j;

float4 f£4LDSValue;

float fWeights [KERNEL DIAMETER] ;
float fWeightSum = 0.0f;

Samplers

All Textures

- Active Textures
- Shader Linkage
=-Geometry Shader // Line, pixel, and LDS offsets from group thread IDs GPUTIime
Code int iPixelOffset = GTid.x ¥ PIXELS_PER THREAD; API Call D (ms)
Samplers int iLineoffset = GTid.y;
-~ All Textures arRenderTargetView 0.018
- Active Textures // Group, pixel, and clamped coords freom group IDs

- Shader Linkage int2 i2GroupCoord = int2( ( Gid.x * RUN_SIZE ) - KERNEL RADIUS, ( Gid.y “ RUN LINES )
-Pixel Shader int2 i2Coord = int2( i2GroupCoord.x + iPixelGffset, i2GroupCoord.y ); B

Code
- All Textures
- Active Textures X Y 7 w
- Shader Linkage
= Qutput Merger
Render States

Render Targets . oraw 3 9] o
~AllUAVS

- Depth Buffer -

Drawcall 3 { 33 (GPUTime: 0.5302 ms): Dispatch (8, 157, 1) _ 0.002

Dispatch

0.000000 0.000000 0.000000 0.000000

localhost GaussianBlurCS11.exe | Profile Completed
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Optimization 4: 2D Thread Groups

= Process multiple lines per thread group

Thread group size is back to a multiple of 64

Better than one long line (2 or 4 works well )

= Improved texture cache efficiency

64 threads load 256 texels

Kernel Radius * 4 threads
load 1 extra texel each

Lol

|

|

o
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Kernel Radius

64 threads compute 256 results
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GPUPerfStudio: 2D Thread Groups

File Windows Help

9©00:0000

Welcome ./ Frame Analyzer |
Frame Debugger | Profile GaussianBl..:44 AM |

‘.. Shader Linkage - /m Data | Options | Analysis | Info

[=-Hull Shader E =~
~Code ®|®Q@®‘ HLSL | Assembly D:;:-lﬂv:r"(]:ta\\ GP(lr':_lTs"Te CSThreads |—

A Torres 0000 0

- Active Textures
-~ Shader Linkage

[=-Domain Shader
Code // Loop counters

int i, j;

float4 f£4LDSValue;

float fWeights [KERNEL DIAMETER] ;
float fWeightSum = 0.0f;

Samplers

All Textures

- Active Textures
- Shader Linkage
=-Geometry Shader // Line, pixel, and LDS offsets from group thread IDs GPUTIime
Code int iPixelOffset = GTid.x ¥ PIXELS_PER THREAD; API Call D (ms)
Samplers int iLineoffset = GTid.y;
-~ All Textures arRenderTargetView 0.018
- Active Textures // Group, pixel, and clamped coords freom group IDs

- Shader Linkage int2 i2GroupCoord = int2( ( Gid.x * RUN_SIZE ) - KERNEL RADIUS, ( Gid.y “ RUN LINES )
-Pixel Shader int2 i2Coord = int2( i2GroupCoord.x + iPixelGffset, i2GroupCoord.y ); B

Code
- All Textures
- Active Textures X Y 7 w
- Shader Linkage
= Qutput Merger
Render States

Render Targets . oraw 3 9] o
~AllUAVS

- Depth Buffer -

Drawcall 3 { 33 (GPUTime: 0.5302 ms): Dispatch (8, 157, 1) _ 0.002

Dispatch

0.000000 0.000000 0.000000 0.000000

localhost GaussianBlurCS11.exe | Profile Completed
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Kernel Diameter

= Kernel diameter needs to be > 7 to see a
DirectCompute win

Otherwise the overhead cancels out the advantage
= The larger the kernel diameter the greater the win
= Large kernels also require more TGSM
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Optimization 5: Use Packing in TGSM

= Use packing to reduce storage space required in
TGSM

Only have 32k per SIMD
= Reduces reads/writes from TGSM
= Often a uint is sufficient for color filtering
= Use SM5.0 instructions f32tof16(), fl16tof32()
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GPUPerfStudio: TGSM Packing

D) GPU Per

File Windows Help

9©00:0000

Welcome /' Frame Analyzer |
| ~Frame Debugger | Profile GaussianBl..44 AM | - X

i !-ShaderLinkage - CS Code « x | D=2 |Options | Analysis | Info

[=-Hull Shader 3 y
-Code i e |® 000 D::a;:r"t]:tall GP(L[JT;ZTE e
0000
-All Textures
-Active Textures
Shader Linkage ;:gF— -

=-Domain Shader

5 Code 250 // Loop counters
Samplers 251 int i, 3;
AIITpxm 252 floatd F4LDsValue;
.A ' T’ES 253 float fWeights[KERNEL_DIRMETER] ;

ctive Textures 254 float fWeightSum = 0.0%;

Shader Linkage il 355

[ Geometry Shader 256 // Line, pixel, and LDS offsets from group thread IDs GPUTIme
Code 257 int iPixelOffset = GTid.x * PIXELS PER_THREAD; E| APT Call (ms)
-Samplers 258 int ilLineCffset = GTid.y;
-All Textures 259 arRenderTargetView 0.018
Active Textures 260 // Group, pixel, and clamped coords from group IDs
-Shader Linkage 261 int2 i2GroupCoord = int2( ( Gid.x * RUN SIZE ) - KERNEL RADIUS, ( Gid.y * RUN LINES ) S

[} Pixel Shader 262 int2 i2Coord = int2( i2GroupCoord.x + iPixelOffset, iZGroupCoord.y ); ISPAte
Code = 263 =
-All Textures -
Active Textures Y w
Shader Link _ paw 3 7 0.000

acer-inage 0.000000 0.000000 7]

[=I- Output Merger
Render States
Render Targets _oaw 3 8] o
All UAVs L
-Depth Buffer -

Drawcall 3 { 33 (GPUTime: 0.5302 ms): Dispatch (8. 157, 1) ocesee _ 0.002
. opaw 3 15| o

localhost GaussianBlurC511.exe | Profile Completed
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24 Efficient Compute Shader Programming oseosemismpmn



Example 2: High Definition Ambient Occlusion

Depth + Normals
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HDAO buffer
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Optimization 6: Perform at Half Resolution

= HDAO at full resolution is expensive

= Running at half resolution captures more occlusion -
and is obviously much faster

= Problem: Artifacts are introduced when combined
with the full resolution scene
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Bilateral Dilate & Blur

HDAO buffer doesn't
match with scene

A bilateral dilate &
blur fixes the issue

ez



New Pipeline...

Still much faster than performing at full res!

Horizontal Pass Vertical Pass
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Pixel Shader vs DirectCompute

Dilate & Blur @ 2560x1600 Kernel
Diameter 25
4 3.17x
% 1.0x
o N
Pixel Shader Direct Compute

*Tested on a range of AMD and NVIDIA DX11 HW,
DirectCompute is between ~2.53x to ~3.17x faster than the
Pixel Shader

ez



Example 3: Depth of Field

= Many techniques exist to solve this problem

= A common technique is to figure out how blurry a
pixel should be

Often called the Cirle of Confusion (CoC)

= A Gaussian blur weighted by CoC is a pretty efficient
way to implement this effect
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Optimization 7: Combine filters

= Combined Gaussian Blur and CoC weighting isn’t a
separable filter, but we can still use a separate
horizontal and vertical 1D pass

— The result is acceptable in most cases

Horizontal Pass Vertical Pass

Intermediate UAV

o

1
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Shogun 2: DOF On
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Pixel Shader vs DirectCompute

CoC Weighted Blur @ 2560x1600 Kernel

Diameter 29
2 1.86x
L2 1.0x
1 _
0.5 E-
0 |
Pixel Shader DirectCompute

*Tested on a range of AMD and NVIDIA DX11 HW,
DirectCompute is between ~1.48x to ~1.86x faster than the
Pixel Shader

ez



Summary

= Compute Shaders can provide big optimizations over
pixel shaders if optimized correctly

= 7 Filter Optimizations presented
Separable Filters
Thread Group Shared Memory
Multiple Pixels per Thread
2D Thread Groups
Packing in Thread Group Shared Memory
Half Res Filtering
Combined non-separable filter using separate passes

= AMD can provide examples for you to use.

AMDZ1
The future is fusion



Aknowledgements

Jon Story, AMD
- Slides, examples, and research

AMD{

The future is fusion



Questions?

bill.bilodeau@amd.com
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