Efficient Compute Shader
Programming

Bill Bilodeau
AMD

Topics Covered in this Talk

= Direct Compute Overview
GPU Architecture

Compute Shader Optimization
GPUPerfStudio 2.5
Code Example: Gaussian Blur

Ambient Occlusion
Depth of Field

AMD{

The future is fusion

Direct Compute

= DirectX interface for general purpose computing on
the GPU

General purpose computing can be done in a pixel
shader

Compute Shader advantages
More control over threads
Access to shared memory

No need to render any polygons

AMDZ\
The future is fusion

Compute Shader Uses in Games

High quality filters
When 2x2 HW biliniar filtering isn’t good enough

Post Processing Effects
Screen space ambient occlusion
Depth of Field

Physics
= Al
Data Parallel Processing

Any algorithm that can be parallelized over a large
data set

AMDZ\
The future is fusion

Direct Compute Features

= Thread Groups
Threads can be grouped for compute shader execution
= Thread Group Shared Memory

Fast local memory shared between threads within the
thread group.

AMDZ1
The future is fusion

GPU Archtecture Overview: HD6970

[MDs

iMemory
Share

AMDY

The future is fusion

GPU Archtecture Overview: Wavefronts

- GPU Time-slices execution
to hide latency

Wave 1 Wave 2 Wave 3 Wave 4

- 1 Wavefront = 4 waves
of threads per SP

- 16 SPs per SIMD, so
16 x 4 = 64 threads per
Wavefront

s

What does this mean for Direct Compute?

= Thread Groups
Threads are always executed in wavefronts on each SIMD

Thread group size should be a multiple of the wavefront
size (64)

Otherwise, [(Thread Group Size) mod 64] threads go
unused!

= Thread Group Shared Memory (LDS)
Limited to 32K per SIMD, so 32K per thead group

Memory is addressed in 32 banks. Addressing the same
location, or loc + (n x 32) may cause bank conflicts.

= \ectorize your compute shader code
4-way VLIW stream processors

AMDZ1
The future is fusion

Optimization Considerations

= Know what it is you're trying to optimize
TEX, ALU

GPUPerfStudio and GPU Shader Analyzer can help with
this.

= Try lots of different configurations

Avoid hard-coding variables
Use GPUPerfStudio to edit in-place

= Avoid divergent dynamic flow control
Wastes shader processor cycles

= Know the hardware

AMDZ\
The future is fusion

Example 1: Gaussian Blur

= Low-pass filter
Approximation of an ideal sync
Impulse Response in 2D:

1 222
h(xy) = 5o¢ =

= For images, implemented as a 2D discrete convolution

o o

fmn) = 2, 2 *i. 7] Al —i, 72— j]

Ijll-—u:l i-—u:.

AMDZY
The future is fusion

Optimization 1: Separable Gaussian Filter

= Some 2D filters can be separated in to independent
horizontal and vertical convolutions, i.e. “separable”

Can use separable passes even for non-separable filters
= Reduces to 1D filter with 1D convolutions:

h(X’y) p— ETTJE‘ 2

f(n) = D alk] hln—k)

—n

= Fewer TEX and ALU operations

AMDZ\
The future is fusion

Typical Pipeline Steps

Source ' Intermediate Destination

RT RT RT

Horizontal Pass Vertical Pass

12 Efficient Compute Shader Programming ﬁmemﬂ

Use Bilinear HW filtering?

Bilinear filter HW can halve the number of ALU and TEX
instructions

= Just need to compute the correct sampling offsets
Not possible with more advanced filters

= Usually because weighting is a dynamic operation

= Think about bilateral cases...

AMDZ\
The future is fusion

Optimization 2: Thread Group Shared Memory

= Use the TGSM as a cache to reduce TEX and ALU ops
= Make sure thread group size is a multiple of 64

128 threads load 128 texels

VLUV LIV LT

l
BT T T TTITTITITII] .

— | LILLLLLLLLLV LU LI VL

Kernel Radius

128 - (Kernel Radius * 2) threads compute results

Redundant compute threads ®

AMDZY
The future is fusion

Avoid Redundant Threads

= Should ensure that all threads in a group have
useful work to do — wherever possible

= Redundant threads will not be reassigned work from
another group

= This would involve alot of redundancy for a large
kernel diameter

AMDZY
The future is fusion

A better use of Thread Group Shared Memory

Kernel Radius * 2 threads

128 threads load 128 texels load 1 extra texel each

J/ J/ \LV VvV V VvV VYV vV VV V VvV V v \l/ \l/ \L

<>

128 threads compute results
No redundant compute threads ©

s

GPUPerfStudio: Separable Filter

File Windows Help

9©00:0000

Welcome ./ Frame Analyzer |
Frame Debugger | Profile GaussianBl..:44 AM |

‘.. Shader Linkage - /m Data | Options | Analysis | Info

[=-Hull Shader E =~
~Code ®|®Q@®‘ HLSL | Assembly D:;:-lﬂv:r"(]:ta\\ GP(lr':_lTs"Te CSThreads |—

A Torres 0000 0

- Active Textures
-~ Shader Linkage

[=-Domain Shader
Code // Loop counters

int i, j;

float4 f£4LDSValue;

float fWeights [KERNEL DIAMETER] ;
float fWeightSum = 0.0f;

Samplers

All Textures

- Active Textures
- Shader Linkage
=-Geometry Shader // Line, pixel, and LDS offsets from group thread IDs GPUTIime
Code int iPixelOffset = GTid.x ¥ PIXELS_PER THREAD; API Call D (ms)
Samplers int iLineoffset = GTid.y;
-~ All Textures arRenderTargetView 0.018
- Active Textures // Group, pixel, and clamped coords freom group IDs

- Shader Linkage int2 i2GroupCoord = int2((Gid.x * RUN_SIZE) - KERNEL RADIUS, (Gid.y “ RUN LINES)
-Pixel Shader int2 i2Coord = int2(i2GroupCoord.x + iPixelGffset, i2GroupCoord.y); B

Code
- All Textures
- Active Textures X Y 7 w
- Shader Linkage
= Qutput Merger
Render States

Render Targets . oraw 3 9] o
~AllUAVS

- Depth Buffer -

Drawcall 3 { 33 (GPUTime: 0.5302 ms): Dispatch (8, 157, 1) _ 0.002

Dispatch

0.000000 0.000000 0.000000 0.000000

localhost GaussianBlurCS11.exe | Profile Completed

AMDY

17 Efficient Compute Shader Programming oseosemismpmn

Optimization 3: Multiple Pixels per Thread

= Allows for natural vectorization
4 works well on AMD HW (OK for scalar hardware too)

= Possible to cache TGSM reads on General Purpose
Registers (GPRs)

Kernel Radius * 2 threads
32 threads load 128 texels load 1 extra texel each

T N T A N R g

BT TITT] .
—|

ol

32 threads compute 128 results
Compute threads not a multiple of 64 ®

AMDZ\
The future is fusion

&
~

GPUPerfStudio: 4 Pixels Per Thread

File Windows Help

9©00:0000

Welcome ./ Frame Analyzer |
Frame Debugger | Profile GaussianBl..:44 AM |

‘.. Shader Linkage - /m Data | Options | Analysis | Info

[=-Hull Shader E =~
~Code ®|®Q@®‘ HLSL | Assembly D:;:-lﬂv:r"(]:ta\\ GP(lr':_lTs"Te CSThreads |—

A Torres 0000 0

- Active Textures
-~ Shader Linkage

[=-Domain Shader
Code // Loop counters

int i, j;

float4 f£4LDSValue;

float fWeights [KERNEL DIAMETER] ;
float fWeightSum = 0.0f;

Samplers

All Textures

- Active Textures
- Shader Linkage
=-Geometry Shader // Line, pixel, and LDS offsets from group thread IDs GPUTIime
Code int iPixelOffset = GTid.x ¥ PIXELS_PER THREAD; API Call D (ms)
Samplers int iLineoffset = GTid.y;
-~ All Textures arRenderTargetView 0.018
- Active Textures // Group, pixel, and clamped coords freom group IDs

- Shader Linkage int2 i2GroupCoord = int2((Gid.x * RUN_SIZE) - KERNEL RADIUS, (Gid.y “ RUN LINES)
-Pixel Shader int2 i2Coord = int2(i2GroupCoord.x + iPixelGffset, i2GroupCoord.y); B

Code
- All Textures
- Active Textures X Y 7 w
- Shader Linkage
= Qutput Merger
Render States

Render Targets . oraw 3 9] o
~AllUAVS

- Depth Buffer -

Drawcall 3 { 33 (GPUTime: 0.5302 ms): Dispatch (8, 157, 1) _ 0.002

Dispatch

0.000000 0.000000 0.000000 0.000000

localhost GaussianBlurCS11.exe | Profile Completed

AMDY

19 Efficient Compute Shader Programming oseosemismpmn

Optimization 4: 2D Thread Groups

= Process multiple lines per thread group

Thread group size is back to a multiple of 64

Better than one long line (2 or 4 works well)

= Improved texture cache efficiency

64 threads load 256 texels

Kernel Radius * 4 threads
load 1 extra texel each

Lol

|

|

o

T I TR T

Kernel Radius

64 threads compute 256 results

AMDﬂ

The futur

GPUPerfStudio: 2D Thread Groups

File Windows Help

9©00:0000

Welcome ./ Frame Analyzer |
Frame Debugger | Profile GaussianBl..:44 AM |

‘.. Shader Linkage - /m Data | Options | Analysis | Info

[=-Hull Shader E =~
~Code ®|®Q@®‘ HLSL | Assembly D:;:-lﬂv:r"(]:ta\\ GP(lr':_lTs"Te CSThreads |—

A Torres 0000 0

- Active Textures
-~ Shader Linkage

[=-Domain Shader
Code // Loop counters

int i, j;

float4 f£4LDSValue;

float fWeights [KERNEL DIAMETER] ;
float fWeightSum = 0.0f;

Samplers

All Textures

- Active Textures
- Shader Linkage
=-Geometry Shader // Line, pixel, and LDS offsets from group thread IDs GPUTIime
Code int iPixelOffset = GTid.x ¥ PIXELS_PER THREAD; API Call D (ms)
Samplers int iLineoffset = GTid.y;
-~ All Textures arRenderTargetView 0.018
- Active Textures // Group, pixel, and clamped coords freom group IDs

- Shader Linkage int2 i2GroupCoord = int2((Gid.x * RUN_SIZE) - KERNEL RADIUS, (Gid.y “ RUN LINES)
-Pixel Shader int2 i2Coord = int2(i2GroupCoord.x + iPixelGffset, i2GroupCoord.y); B

Code
- All Textures
- Active Textures X Y 7 w
- Shader Linkage
= Qutput Merger
Render States

Render Targets . oraw 3 9] o
~AllUAVS

- Depth Buffer -

Drawcall 3 { 33 (GPUTime: 0.5302 ms): Dispatch (8, 157, 1) _ 0.002

Dispatch

0.000000 0.000000 0.000000 0.000000

localhost GaussianBlurCS11.exe | Profile Completed

AMDY

21 Efficient Compute Shader Programming oseosemismpmn

Kernel Diameter

= Kernel diameter needs to be > 7 to see a
DirectCompute win

Otherwise the overhead cancels out the advantage
= The larger the kernel diameter the greater the win
= Large kernels also require more TGSM

AMDZ\
The future is fusion

Optimization 5: Use Packing in TGSM

= Use packing to reduce storage space required in
TGSM

Only have 32k per SIMD
= Reduces reads/writes from TGSM
= Often a uint is sufficient for color filtering
= Use SM5.0 instructions f32tof16(), fl16tof32()

AMDZY
The future is fusion

GPUPerfStudio: TGSM Packing

D) GPU Per

File Windows Help

9©00:0000

Welcome /' Frame Analyzer |
| ~Frame Debugger | Profile GaussianBl..44 AM | - X

i !-ShaderLinkage - CS Code « x | D=2 |Options | Analysis | Info

[=-Hull Shader 3 y
-Code i e |® 000 D::a;:r"t]:tall GP(L[JT;ZTE e
0000
-All Textures
-Active Textures
Shader Linkage ;:gF— -

=-Domain Shader

5 Code 250 // Loop counters
Samplers 251 int i, 3;
AIITpxm 252 floatd F4LDsValue;
.A ' T’ES 253 float fWeights[KERNEL_DIRMETER] ;

ctive Textures 254 float fWeightSum = 0.0%;

Shader Linkage il 355

[Geometry Shader 256 // Line, pixel, and LDS offsets from group thread IDs GPUTIme
Code 257 int iPixelOffset = GTid.x * PIXELS PER_THREAD; E| APT Call (ms)
-Samplers 258 int ilLineCffset = GTid.y;
-All Textures 259 arRenderTargetView 0.018
Active Textures 260 // Group, pixel, and clamped coords from group IDs
-Shader Linkage 261 int2 i2GroupCoord = int2((Gid.x * RUN SIZE) - KERNEL RADIUS, (Gid.y * RUN LINES) S

[} Pixel Shader 262 int2 i2Coord = int2(i2GroupCoord.x + iPixelOffset, iZGroupCoord.y); ISPAte
Code = 263 =
-All Textures -
Active Textures Y w
Shader Link _ paw 3 7 0.000

acer-inage 0.000000 0.000000 7]

[=I- Output Merger
Render States
Render Targets _oaw 3 8] o
All UAVs L
-Depth Buffer -

Drawcall 3 { 33 (GPUTime: 0.5302 ms): Dispatch (8. 157, 1) ocesee _ 0.002
. opaw 3 15| o

localhost GaussianBlurC511.exe | Profile Completed

AMDY

24 Efficient Compute Shader Programming oseosemismpmn

Example 2: High Definition Ambient Occlusion

Depth + Normals

R N %
T -
IA. N\ ;__;_; ‘s. g - % v}
b o . = ¥) x
o Wi gP :
- N -
\\Q’,; s /
LN
U™

HDAO buffer

25 Efficient Compute Shader Programming ﬁmﬂ?ﬁlﬂ

Optimization 6: Perform at Half Resolution

= HDAO at full resolution is expensive

= Running at half resolution captures more occlusion -
and is obviously much faster

= Problem: Artifacts are introduced when combined
with the full resolution scene

AMDZY
The future is fusion

Bilateral Dilate & Blur

HDAO buffer doesn't
match with scene

A bilateral dilate &
blur fixes the issue

ez

New Pipeline...

Still much faster than performing at full res!

Horizontal Pass Vertical Pass

) A

hS

. —m—

b L S
_ BH\;@ear Upsample
- - . 2

y .
e

y N

.
1
N
—
o

K3

AR E. :
. Dilated & Blurred

4 ™

AMDY

The future is fusion

Pixel Shader vs DirectCompute

Dilate & Blur @ 2560x1600 Kernel
Diameter 25
4 3.17x
% 1.0x
o N
Pixel Shader Direct Compute

*Tested on a range of AMD and NVIDIA DX11 HW,
DirectCompute is between ~2.53x to ~3.17x faster than the
Pixel Shader

ez

Example 3: Depth of Field

= Many techniques exist to solve this problem

= A common technique is to figure out how blurry a
pixel should be

Often called the Cirle of Confusion (CoC)

= A Gaussian blur weighted by CoC is a pretty efficient
way to implement this effect

AMDZ\
The future is fusion

Optimization 7: Combine filters

= Combined Gaussian Blur and CoC weighting isn’t a
separable filter, but we can still use a separate
horizontal and vertical 1D pass

— The result is acceptable in most cases

Horizontal Pass Vertical Pass

Intermediate UAV

o

1

AMDY

Efficient Compute Shader Programming oseosemismpmn

=
O
L
O
)
_
o
c
3
o
o
£
7

The future is fusion

Shogun 2: DOF On

AMDZR

The future is fusion

Pixel Shader vs DirectCompute

CoC Weighted Blur @ 2560x1600 Kernel

Diameter 29
2 1.86x
L2 1.0x
1 _
0.5 E-
0 |
Pixel Shader DirectCompute

*Tested on a range of AMD and NVIDIA DX11 HW,
DirectCompute is between ~1.48x to ~1.86x faster than the
Pixel Shader

ez

Summary

= Compute Shaders can provide big optimizations over
pixel shaders if optimized correctly

= 7 Filter Optimizations presented
Separable Filters
Thread Group Shared Memory
Multiple Pixels per Thread
2D Thread Groups
Packing in Thread Group Shared Memory
Half Res Filtering
Combined non-separable filter using separate passes

= AMD can provide examples for you to use.

AMDZ1
The future is fusion

Aknowledgements

Jon Story, AMD
- Slides, examples, and research

AMD{

The future is fusion

Questions?

bill.bilodeau@amd.com

AMD{

The future is fusion

