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Topics Covered in this Talk

 Direct Compute Overview

 GPU Architecture

 Compute Shader Optimization

– GPUPerfStudio 2.5

– Code Example: Gaussian Blur

 Ambient Occlusion

 Depth of Field
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Direct Compute

 DirectX interface for general purpose computing on 
the GPU

– General purpose computing can be done in a pixel 
shader

– Compute Shader advantages

 More control over threads

 Access to shared memory

 No need to render any polygons
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Compute Shader Uses in Games

 High quality filters

– When 2x2 HW biliniar filtering isn’t good enough

 Post Processing Effects

– Screen space ambient occlusion

– Depth of Field

 Physics

 AI

 Data Parallel Processing

– Any algorithm that can be parallelized over a large 
data set
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 Thread Groups

– Threads can be grouped for compute shader execution

 Thread Group Shared Memory

– Fast local memory shared between threads within the 
thread group.

Direct Compute Features
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GPU Archtecture Overview: HD6970

4 –Wide VLIW Stream Processor
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SIMD

- Thread Groups run on SIMDs

- Thread Group Shared Memory 
is stored in Local Data Share
memory

- 24 SIMDs on
the HD6970
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GPU Archtecture Overview: Wavefronts
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- GPU Time-slices execution
to hide latency

- 1 Wavefront = 4 waves
of threads per SP

- 16 SPs per SIMD, so 
16 x 4 = 64 threads per 
Wavefront
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 Thread Groups

– Threads are always executed in wavefronts on each SIMD

– Thread group size should be a multiple of the wavefront 
size (64)

 Otherwise, [(Thread Group Size) mod 64] threads go 
unused!

 Thread Group Shared Memory (LDS)

– Limited to 32K per SIMD, so 32K per thead group

– Memory is addressed in 32 banks. Addressing the same 
location, or loc + (n x 32) may cause bank conflicts. 

 Vectorize your compute shader code

– 4-way VLIW stream processors

What does this mean for Direct Compute?
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 Know what it is you’re trying to optimize

– TEX, ALU

– GPUPerfStudio and GPU Shader Analyzer can help with 
this.

 Try lots of different configurations

– Avoid hard-coding variables

– Use GPUPerfStudio to edit in-place

 Avoid divergent dynamic flow control

– Wastes shader processor cycles

 Know the hardware

Optimization Considerations
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Example 1: Gaussian Blur

 Low-pass filter

– Approximation of an ideal sync

– Impulse Response in 2D:

h(x,y)

 For images, implemented as a 2D discrete convolution

f(m,n) =
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Optimization 1: Separable Gaussian Filter

 Some 2D filters can be separated in to independent 
horizontal and vertical convolutions, i.e. “separable”

– Can use separable passes even for non-separable filters

 Reduces to 1D filter with 1D convolutions:

h(x,y)

f(n)

 Fewer TEX and ALU operations
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Typical Pipeline Steps
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Bilinear filter HW can halve the number of ALU and TEX 
instructions

 Just need to compute the correct sampling offsets

Not possible with more advanced filters

 Usually because weighting is a dynamic operation

 Think about bilateral cases...

Use Bilinear HW filtering?
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 Use the TGSM as a cache to reduce TEX and ALU ops

 Make sure thread group size is a multiple of 64

Optimization 2: Thread Group Shared Memory

...........

128 threads load 128 texels

128 – ( Kernel Radius * 2 ) threads compute results

Kernel Radius

Redundant compute threads 
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 Should ensure that all threads in a group have 
useful work to do – wherever possible

 Redundant threads will not be reassigned work from 
another group

 This would involve alot of redundancy for a large 
kernel diameter

Avoid Redundant Threads
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A better use of Thread Group Shared Memory

...........

128 threads load 128 texels

128 threads compute results

No redundant compute threads 

Kernel Radius * 2 threads
load 1 extra texel each
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GPUPerfStudio: Separable Filter
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 Allows for natural vectorization

– 4 works well on AMD HW (OK for scalar hardware too)

 Possible to cache TGSM reads on General Purpose 
Registers (GPRs)

Optimization 3: Multiple Pixels per Thread

Compute threads not a multiple of 64 

...........

32 threads compute 128 results

32 threads load 128 texels
Kernel Radius * 2 threads

load 1 extra texel each
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GPUPerfStudio: 4 Pixels Per Thread
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 Process multiple lines per thread group

– Thread group size is back to a multiple of 64

– Better than one long line (2 or 4 works well )

 Improved texture cache efficiency

Optimization 4: 2D Thread Groups

...........

...........

Kernel Radius

64 threads compute 256 results

64 threads load 256 texels

Kernel Radius * 4 threads
load 1 extra texel each
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GPUPerfStudio: 2D Thread Groups
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 Kernel diameter needs to be > 7 to see a 
DirectCompute win

– Otherwise the overhead cancels out the advantage

 The larger the kernel diameter the greater the win

 Large kernels also require more TGSM

Kernel Diameter



Efficient Compute Shader Programming23

 Use packing to reduce storage space required in 
TGSM

– Only have 32k per SIMD

 Reduces reads/writes from TGSM

 Often a uint is sufficient for color filtering

 Use SM5.0 instructions f32tof16(),  f16tof32()

Optimization 5: Use Packing in TGSM
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GPUPerfStudio: TGSM Packing
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Example 2: High Definition Ambient Occlusion 

Depth + Normals

HDAO buffer

* =

Original Scene Final Scene
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 HDAO at full resolution is expensive

 Running at half resolution captures more occlusion –
and is obviously much faster

 Problem: Artifacts are introduced when combined 
with the full resolution scene

Optimization 6: Perform at Half Resolution
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Bilateral Dilate & Blur

HDAO buffer doesn‘t 
match with scene

A bilateral dilate & 
blur fixes the issue
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New Pipeline...

Bilinear Upsample Intermediate UAV Dilated & Blurred

Horizontal Pass Vertical Pass

½ Res Still much faster than performing at full res!
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Pixel Shader vs DirectCompute

*Tested on a range of AMD and NVIDIA DX11 HW, 
DirectCompute is between ~2.53x to ~3.17x faster than the 
Pixel Shader
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 Many techniques exist to solve this problem

 A common technique is to figure out how blurry a 
pixel should be

– Often called the Cirle of Confusion (CoC)

 A Gaussian blur weighted by CoC is a pretty efficient 
way to implement this effect

Example 3: Depth of Field
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 Combined Gaussian Blur and CoC weighting isn’t a 
separable filter, but we can still use a separate 
horizontal and vertical 1D pass

– The result is acceptable in most cases

Optimization 7: Combine filters

Intermediate UAV

CoC

Horizontal Pass Vertical Pass
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Shogun 2 – DOF Off
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Shogun 2: DOF On
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Pixel Shader vs DirectCompute

*Tested on a range of AMD and NVIDIA DX11 HW, 
DirectCompute is between ~1.48x to ~1.86x faster than the 
Pixel Shader
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 Compute Shaders can provide big optimizations over 
pixel shaders if optimized correctly

 7 Filter Optimizations presented

– Separable Filters

– Thread Group Shared Memory

– Multiple Pixels per Thread

– 2D Thread Groups

– Packing in Thread Group Shared Memory

– Half Res Filtering

– Combined non-separable filter using separate passes

 AMD can provide examples for you to use.

Summary
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Jon Story, AMD

- Slides, examples, and research
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Questions?

bill.bilodeau@amd.com


