
Efficient Compute Shader 
Programming
Bill Bilodeau

AMD



Efficient Compute Shader Programming2

Topics Covered in this Talk

 Direct Compute Overview

 GPU Architecture

 Compute Shader Optimization

– GPUPerfStudio 2.5

– Code Example: Gaussian Blur

 Ambient Occlusion

 Depth of Field



Efficient Compute Shader Programming3

Direct Compute

 DirectX interface for general purpose computing on 
the GPU

– General purpose computing can be done in a pixel 
shader

– Compute Shader advantages

 More control over threads

 Access to shared memory

 No need to render any polygons



Efficient Compute Shader Programming4

Compute Shader Uses in Games

 High quality filters

– When 2x2 HW biliniar filtering isn’t good enough

 Post Processing Effects

– Screen space ambient occlusion

– Depth of Field

 Physics

 AI

 Data Parallel Processing

– Any algorithm that can be parallelized over a large 
data set



Efficient Compute Shader Programming5

 Thread Groups

– Threads can be grouped for compute shader execution

 Thread Group Shared Memory

– Fast local memory shared between threads within the 
thread group.

Direct Compute Features



Efficient Compute Shader Programming6

GPU Archtecture Overview: HD6970

4 –Wide VLIW Stream Processor

L
o
c
a
l D

a
ta

 S
h
a
re

SIMD

- Thread Groups run on SIMDs

- Thread Group Shared Memory 
is stored in Local Data Share
memory

- 24 SIMDs on
the HD6970



Efficient Compute Shader Programming7

GPU Archtecture Overview: Wavefronts

T
im

e

- GPU Time-slices execution
to hide latency

- 1 Wavefront = 4 waves
of threads per SP

- 16 SPs per SIMD, so 
16 x 4 = 64 threads per 
Wavefront



Efficient Compute Shader Programming8

 Thread Groups

– Threads are always executed in wavefronts on each SIMD

– Thread group size should be a multiple of the wavefront 
size (64)

 Otherwise, [(Thread Group Size) mod 64] threads go 
unused!

 Thread Group Shared Memory (LDS)

– Limited to 32K per SIMD, so 32K per thead group

– Memory is addressed in 32 banks. Addressing the same 
location, or loc + (n x 32) may cause bank conflicts. 

 Vectorize your compute shader code

– 4-way VLIW stream processors

What does this mean for Direct Compute?



Efficient Compute Shader Programming9

 Know what it is you’re trying to optimize

– TEX, ALU

– GPUPerfStudio and GPU Shader Analyzer can help with 
this.

 Try lots of different configurations

– Avoid hard-coding variables

– Use GPUPerfStudio to edit in-place

 Avoid divergent dynamic flow control

– Wastes shader processor cycles

 Know the hardware

Optimization Considerations



Efficient Compute Shader Programming10

Example 1: Gaussian Blur

 Low-pass filter

– Approximation of an ideal sync

– Impulse Response in 2D:

h(x,y)

 For images, implemented as a 2D discrete convolution

f(m,n) =



Efficient Compute Shader Programming11

Optimization 1: Separable Gaussian Filter

 Some 2D filters can be separated in to independent 
horizontal and vertical convolutions, i.e. “separable”

– Can use separable passes even for non-separable filters

 Reduces to 1D filter with 1D convolutions:

h(x,y)

f(n)

 Fewer TEX and ALU operations



Efficient Compute Shader Programming12

Typical Pipeline Steps



Efficient Compute Shader Programming13

Bilinear filter HW can halve the number of ALU and TEX 
instructions

 Just need to compute the correct sampling offsets

Not possible with more advanced filters

 Usually because weighting is a dynamic operation

 Think about bilateral cases...

Use Bilinear HW filtering?



Efficient Compute Shader Programming14

 Use the TGSM as a cache to reduce TEX and ALU ops

 Make sure thread group size is a multiple of 64

Optimization 2: Thread Group Shared Memory

...........

128 threads load 128 texels

128 – ( Kernel Radius * 2 ) threads compute results

Kernel Radius

Redundant compute threads 



Efficient Compute Shader Programming15

 Should ensure that all threads in a group have 
useful work to do – wherever possible

 Redundant threads will not be reassigned work from 
another group

 This would involve alot of redundancy for a large 
kernel diameter

Avoid Redundant Threads



Efficient Compute Shader Programming16

A better use of Thread Group Shared Memory

...........

128 threads load 128 texels

128 threads compute results

No redundant compute threads 

Kernel Radius * 2 threads
load 1 extra texel each



Efficient Compute Shader Programming17

GPUPerfStudio: Separable Filter



Efficient Compute Shader Programming18

 Allows for natural vectorization

– 4 works well on AMD HW (OK for scalar hardware too)

 Possible to cache TGSM reads on General Purpose 
Registers (GPRs)

Optimization 3: Multiple Pixels per Thread

Compute threads not a multiple of 64 

...........

32 threads compute 128 results

32 threads load 128 texels
Kernel Radius * 2 threads

load 1 extra texel each



Efficient Compute Shader Programming19

GPUPerfStudio: 4 Pixels Per Thread



Efficient Compute Shader Programming20

 Process multiple lines per thread group

– Thread group size is back to a multiple of 64

– Better than one long line (2 or 4 works well )

 Improved texture cache efficiency

Optimization 4: 2D Thread Groups

...........

...........

Kernel Radius

64 threads compute 256 results

64 threads load 256 texels

Kernel Radius * 4 threads
load 1 extra texel each



Efficient Compute Shader Programming21

GPUPerfStudio: 2D Thread Groups



Efficient Compute Shader Programming22

 Kernel diameter needs to be > 7 to see a 
DirectCompute win

– Otherwise the overhead cancels out the advantage

 The larger the kernel diameter the greater the win

 Large kernels also require more TGSM

Kernel Diameter



Efficient Compute Shader Programming23

 Use packing to reduce storage space required in 
TGSM

– Only have 32k per SIMD

 Reduces reads/writes from TGSM

 Often a uint is sufficient for color filtering

 Use SM5.0 instructions f32tof16(),  f16tof32()

Optimization 5: Use Packing in TGSM



Efficient Compute Shader Programming24

GPUPerfStudio: TGSM Packing



Efficient Compute Shader Programming25

Example 2: High Definition Ambient Occlusion 

Depth + Normals

HDAO buffer

* =

Original Scene Final Scene



Efficient Compute Shader Programming26

 HDAO at full resolution is expensive

 Running at half resolution captures more occlusion –
and is obviously much faster

 Problem: Artifacts are introduced when combined 
with the full resolution scene

Optimization 6: Perform at Half Resolution



Efficient Compute Shader Programming27

Bilateral Dilate & Blur

HDAO buffer doesn‘t 
match with scene

A bilateral dilate & 
blur fixes the issue



Efficient Compute Shader Programming28

New Pipeline...

Bilinear Upsample Intermediate UAV Dilated & Blurred

Horizontal Pass Vertical Pass

½ Res Still much faster than performing at full res!



Efficient Compute Shader Programming29

Pixel Shader vs DirectCompute

*Tested on a range of AMD and NVIDIA DX11 HW, 
DirectCompute is between ~2.53x to ~3.17x faster than the 
Pixel Shader



Efficient Compute Shader Programming30

 Many techniques exist to solve this problem

 A common technique is to figure out how blurry a 
pixel should be

– Often called the Cirle of Confusion (CoC)

 A Gaussian blur weighted by CoC is a pretty efficient 
way to implement this effect

Example 3: Depth of Field



Efficient Compute Shader Programming31

 Combined Gaussian Blur and CoC weighting isn’t a 
separable filter, but we can still use a separate 
horizontal and vertical 1D pass

– The result is acceptable in most cases

Optimization 7: Combine filters

Intermediate UAV

CoC

Horizontal Pass Vertical Pass



Efficient Compute Shader Programming32

Shogun 2 – DOF Off



Efficient Compute Shader Programming33

Shogun 2: DOF On



Efficient Compute Shader Programming34

Pixel Shader vs DirectCompute

*Tested on a range of AMD and NVIDIA DX11 HW, 
DirectCompute is between ~1.48x to ~1.86x faster than the 
Pixel Shader



Efficient Compute Shader Programming35

 Compute Shaders can provide big optimizations over 
pixel shaders if optimized correctly

 7 Filter Optimizations presented

– Separable Filters

– Thread Group Shared Memory

– Multiple Pixels per Thread

– 2D Thread Groups

– Packing in Thread Group Shared Memory

– Half Res Filtering

– Combined non-separable filter using separate passes

 AMD can provide examples for you to use.

Summary



Efficient Compute Shader Programming36

Jon Story, AMD

- Slides, examples, and research

Aknowledgements



Efficient Compute Shader Programming37

Questions?

bill.bilodeau@amd.com


