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Introduction 1

1 Introduction
The evaluation of the suitability and quality of cryptographic mechanisms is tasked to the BSI (Bundesamt 
für Sicherheit in der Informationstechnik – Federal Office for Information Security) in Germany. The BSI 
therefore initiated this study of the Linux Random Number Generator (Linux-RNG). Linux is used not only 
in numerous server and desktop systems but also in mobile IT devices, covering sensitive areas in 
enterprises as well as in government. Good random numbers are a prerequisite for the secure processing of 
data in governmental as well as enterprise and end user systems.

The Linux operating system kernel offers via the device files /dev/random and /dev/urandom as well as the 
getrandom system call access to its random number generator for user space applications. In addition, the 
Linux-RNG offers in-kernel interfaces to allow other Linux kernel components to obtain random numbers. 
The functionality, properties and usage of the Linux-RNG are subject to assessment in this document. This 
assessment covers the collection of entropy and discussion of the noise sources, the post-processing of the 
collected true random data and the generation of random numbers that are provided to the calling 
applications or in-kernel service functions.

One focal point of this study in addition to the assessment of the algorithmic part of the Linux-RNG is the 
estimation of the entropy of the raw data that is provided to the Linux-RNG by the noise sources. The goal 
of the assessment is to determine whether the Linux-RNG is able to provide 100 bits, the threshold defined 
by [TR021021], of entropy early after a system boot.

The entire implementation of the Linux-RNG is explained in detail to allow a full understanding of the flow 
of information, starting at the point where the entropy is gathered up to the point where random numbers 
are returned to either in-kernel or user space callers. Each of the noise sources providing entropy to the 
Linux-RNG is described, detailing why the obtained data is unpredictable. The design description is 
complemented with functional verification and statistical tests covering the different noise sources and all 
stages of data processing. The primary goal is to analyze whether the entropy obtained from the noise 
sources is appropriately collected, compressed, processed without losing entropy, and delivered to the caller.

Besides, this study is intended to analyze whether the design of the Linux-RNG complies with the NTG.1 or 
DRG.3 requirements for RNGs specified by AIS 20/31 [AIS2031]. AIS 20/31 is a specification issued by the BSI 
to design and analyze deterministic as well as non-deterministic random number generators. This 
document provides support for an analysis of RNGs by defining different classes of RNGs where NTG.1 
specifies requirements for “non-physical true random number generators” and DRG.3 specifies 
requirements for “deterministic random number generators”.

The tests conducted for this study are fully explained to the extent that users can reproduce them. Further, 
the tests are documented with a rationale for why they are appropriate to observe the intended behavior of 
the Linux-RNG. For each test, the obtained results are discussed with a conclusion as to whether the 
observed behavior supports the generation and maintenance of entropy. The source code of the tests are 
made available to the BSI to allow fellow-researchers to verify the testing and its conclusions.

The tests are all performed on an Intel x86 hardware system, as well as a virtual machine executed on Intel 
x86, using the virtualization extension of VT-x. The majority of the tests are applicable to other architectures 
as the code implementing the Linux-RNG is independent of the hardware architecture. One exception is the 
assessment of the noise sources, which is only applicable to the tested architecture because the majority of 
the entropy is derived using a high-resolution time stamp. Albeit all major hardware architectures including 
ARM, MIPS, IBM System Z, POWER, and Sparc have high-resolution timers used by the Linux-RNG, about 
one half of all hardware architectures supported by Linux do not provide such a high-resolution timer. Even 
if an architecture provides a high-resolution timer, the resolution may still vary and thus the amount of 
entropy derived from this timer.

The entropy is derived from events triggered by hardware devices. The number and type of devices vary 
greatly between architectures. Thus, the amount of entropy available to the Linux-RNG varies too. However, 
the quality of the entropy and the amount of entropy per device event is very consistent for one hardware 
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architecture. Therefore, the test results obtained on one particular Intel x86 hardware system can be applied 
to other Intel x86 hardware systems.

Based on the design and test results, recommendations about using the Linux-RNG are given to allow 
vendors an appropriate employment of the Linux-RNG into their systems.

1.1 Authors

Stephan Müller, atsec information security GmbH

Sebastian Mayer, atsec information security GmbH

Dr. Caroline Holz auf der Heide, atsec information security GmbH

Dr. Andreas Hohenegger, atsec information security GmbH

1.2 Copyright

The study including all its parts are copyrighted by the BSI–Federal Office for Information Security. Any use 
outside the limits defined by the copyright law without approval by the BSI is not permitted and punishable. 
This covers reproduction, translation, micro filming, and storing and processing in electronic systems.
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2 Architecture of Non-Deterministic Random 
Number Generators (NDRNGs)

The analysis of the Linux-RNG shall answer the question whether it is a complete standalone NDRNG that 
has no further dependencies on other software. To draw such conclusions, this section describes a general 
architectural model for NDRNGs. During the design description of the Linux-RNG, it will be compared to 
the general architectural model to understand whether all components of a NDRNG are present within the 
Linux-RNG.

2.1 Terminology

Before starting with the technical aspects of RNGs, the terminology used in the subsequent sections and 
chapters is defined.

Term Definition

ChaCha20 DRNG The ChaCha20 deterministic random number generator (DRNG) referred to in this 
document is conceptually similar to an entropy pool: a memory segment holds ideal 
random data. The cryptographic function of ChaCha20 is used as a state-transition 
function as well as an output function. The ChaCha20 implementation is derived from 
[RFC7539] sections 2.1 to 2.3 where the random number is the key stream generated by 
the ChaCha20 block operation.

Conditioning Conditioning is the process where input data is processed such that the resulting data 
will not allow an observer to derive the original input data. In addition, conditioning is 
also the process to reduce statistical weaknesses exhibited in the raw data stream. Such 
conditioning operations can be performed using cryptographic or non-cryptographic 
operations. An example for cryptographic conditioning is the application of a hash 
function. A linear feedback shift register (LFSR) is an example for a non-cryptographic 
conditioning operation.

Deterministic 
Random Number 
Generator 
(DRNG)

A deterministic random number generator is an algorithm for generating sequences of 
data with properties approximating those of random numbers. The output of a DRNG 
is determined by its initial seed data. When initialized with the same seed, it will 
produce the same sequence of data.
See also “Random Number Generator”.

Entropy Pool The term entropy pool in this document refers to a memory area holding true random 
data which is processed with a deterministic input and state-transition function as well 
as output function based on the Blake2s hash / keyed hash function. Considering the 
state-transition and output function, the processing of the data maintained by an 
entropy pool is fully deterministic in nature.

Human Interface 
Devices (HID)

The term human interface device collectively refers to all hardware devices that a 
human user can use to interact with a computer, such as a keyboard, a mouse, a tablet 
and similar.

Ideal Random 
Number 
Generator

An ideal random number generator generates random numbers which are 
independently and identically distributed (IID as defined by [SP800-90B]), and follow 
an equidistribution. These requirements imply that the generated data does not exhibit 
any statistical patterns, e.g. are serially uncorrelated samples.

Jiffies The Linux kernel maintains a monotonically increasing counter called Jiffies. This 
counter is incremented by one at a fixed time interval. This time interval is specified 
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Term Definition

during compile time of the kernel. The default on Intel x86 platforms is 1000 Hz, i.e. the 
Jiffies counter is incremented once every millisecond. Other common values are 100 
Hz and 250 Hz.

Most Significant 
Bits (MSB)

The processing of a bit-stream may operate only on a subset of it. To reference the 
location of that subset, the term “most significant bits” refers to the left-most bits of the 
bit-stream. They are called most significant bits as they denominate large integer 
numbers when viewing the bit-stream as an integer.
See also Least Significant Bits.

Least Significant 
Bits (LSB)

The processing of a bit-stream may operate only on a subset of it. To reference the 
location of that subset, the term “least significant bits” refers to the right-most bits of 
the bit-stream. They are called least significant bits as they denominate small integer 
numbers when viewing the bit-stream as an integer.
See also Most Significant Bits.

Linear Feedback 
Shift Register 
(LFSR)

A linear feedback shift register is a special case of a shift register where the input data is 
a linear function of the previous state of the LFSR. This implies that an LFSR is a 
circular application of a shift register.
All LFSRs discussed in this document use the linear function of XOR to combine parts 
of the previous state with input data. The LFSRs discussed in this study are all 
Fibonacci LFSR where the parts of the previous state that are selected are based on taps 
defined by a polynomial.

Linux Random 
Number 
Generator (Linux-
RNG)

The Linux Random Number Generator is the software component in the Linux kernel 
that implements the logic to provide random numbers via the /dev/random, 
/dev/urandom device files and the getrandom system call to user space. In addition, 
the Linux-RNG provides random numbers to in-kernel users via the 
get_random_bytes application programming interface (API). The Linux-RNG is 
completely implemented in the Linux kernel source code file drivers/char/random.c.

Noise Source A noise source provides true random data. In case of the Linux-RNG, a noise source is 
the software component that monitors hardware events to derive entropy from these 
events.

Non-
deterministic 
Random Number 
Generator
(NDRNG)

A non-deterministic random number generator generates a sequence of data that 
cannot be predicted better than using random chance.

Non-Uniform 
Memory Access 
(NUMA)

Hardware systems with many CPUs may not place all CPUs on one motherboard, but 
use several individual motherboards with CPUs which communicate with a high-speed 
interconnect. Each individual motherboard is called a node. Access to memory present 
on the same motherboard as the requesting CPU (i.e. “NUMA-node local access”) is 
faster than CPUs requesting access to memory on a different NUMA-node.

Random Number 
Generator (RNG)

See also “Non-deterministic Random Number Generator”.

SHA-1 SHA-1, short for Secure Hash Algorithm, is a cryptographic one-way function where an 
input bit stream of arbitrary length is turned into an output bit string of 160 bits. SHA-
1 exhibits various cryptographic properties to convert arbitrary input data to output 
data that shows the characteristics of an ideal random number generator.

True Random True Random Data is a data stream of arbitrary size that is believed to contain entropy. 
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Term Definition

Data The amount of entropy contained in the true random data is not defined.

Table 1: Terminology

2.2 General Architecture

NDRNGs can be found in many forms, including:

• RNGs and noise sources designed for the sole purpose of providing entropy bits. Such noise sources can 
be found on physical devices like smart cards, special circuitry, hardware security modules (HSMs), etc.

• RNGs and noise sources that observe the behavior of events of regular hardware. These would include 
observing the timing of events obtained from human interface devices (HID) (e.g. mouse movements or 
typing on a keyboard), block devices (e.g. spinning hard disks) or interrupts.

• Noise sources that include a RNG utilizing capabilities of the CPU, including timer-based noise sources, 
CPU instructions using hardware noise sources like RDRAND on Intel processors (see [INTELDRNG]), etc.

Irrespective of the nature of the non-deterministic random number generator, all forms follow a general 
design pattern outlined in figure 1. This illustration closely resembles the specification outlined in [SP800-
90B], chapter 2, regarding the noise source and [SP800-90C], section 5.1, for the interlink between a noise 
source and a DRNG. In addition, this figure also relates to the description of a noise source given in 
[AIS2031] with the difference that the health tests are not as pronounced in figure 1.

The document [SP800-90B] covers the design requirements as well as quantitative assessments of noise 
sources. The description is complemented by [SP800-90C] outlining principles on the architecture of 
NDRNGs where one or more noise sources are combined with deterministic post-processing to deliver 
cryptographically strong random numbers. Both documents are provided by the US governmental body, 
NIST.

The document [AIS2031] is similar in nature to the aforementioned documents by outlining the architecture 
of noise sources, their combination with deterministic post-processing logic to deliver cryptographically 
strong random numbers, and the discussion of how such designs are assessed. [AIS2031] is published and 
mandated by the German governmental body, BSI.
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Figure 1: Non-deterministic random 
number generator architecture

Figure 1 shows the entire logic flow for generating random numbers. The origin of any random number is 
the noise source marked as a dark gray field in figure 1. The output of a noise source is fed into a DRNG 
which generates the output for cryptographic use cases. In some systems, a conditioner is applied to the 
output of the noise source where the output of the conditioner is then used as input for a DRNG. The 
combination of the noise source and the DRNG, possibly supported by a conditioner, is a non-deterministic 
random number generator. Figure 1 denotes it with a light gray box.

It is possible, and even often seen in real-life environments, that multiple DRNGs are chained. Such a chain 
of DRNGs is fed by the noise source or conditioned noise source data. For example, user space cryptographic 
daemons using the OpenSSL cryptographic library obtain their seed from /dev/random or the getrandom 
system call (depending on the used OpenSSL version) and its deterministic component to seed the OpenSSL 
deterministic random number generator.

The architecture of a non-deterministic random number generator together with its noise source as shown 
in figure 1 contains the following major parts:

• A phenomenon is measured that exhibits an unpredictable or partially unpredictable pattern to the 
observer. It is key to understand that the unpredictability always relates to the observer and may vary 
depending on the type and skills of the observer – i.e. the unpredictability and therefore the resulting 
entropy is relative to the observer. For a lot of noise sources, the observed phenomenon may be 
completely deterministic if all parameters are known that affect the phenomenon. Such noise sources 
depend on the fact that one or more of these parameters cannot be predicted by an observer with the 
required accuracy. This unpredictable phenomenon can either be:

• a  microscopic property of a physical system that shows chaotic or quantum behavior, including 
thermodynamic systems. Examples are measurements of thermal noise, shot noise, metastability in 
bi-stable circuits or even radioactive decay1; or

1 Albeit radioactive decay is a good example of an unpredictable physical phenomenon with a proven physical 
theory behind it, the author is well aware that radioactive decay is highly impractical in normal computing 
environments. Therefore, it shall serve as an example for discussion only.
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• an unpredictable phenomenon triggered by the interaction between the computer hardware and its 
environment (for example, human interaction, or the receipt of interrupts triggered from external 
devices recording some externally triggered events would fall into this category).

• A recording logic is required that is capable of measuring the events generated by the unpredictable 
phenomenon. The recording logic does not necessarily need to store the measured data.

• Using the recorded events, the digitization logic turns the recorded data into a digital data stream which 
is then provided to either a post-processing conditioner or directly into a DRNG. The use of a DRNG at 
this stage is not intended to stretch the entropy over a large amount of output, but its purpose is the 
same as that of the conditioner discussed in the following. Commonly, only one of the mentioned 
mechanisms is used to post-process the data from a noise source. Albeit it may be possible to use the 
output of the digitization logic directly as input into cryptographic use cases, such a course of action is 
commonly disregarded. Conditioners or DRNGs will counter statistical anomalies in temporary or even 
permanent skews of recorded events. The conditioner as well as the DRNG perform an operation to 
transform the recorded data such that it is indistinguishable from an ideal random number generator 
where the operation does not reduce the collected entropy. The key value of those components is to 
increase the entropy per bit by performing a compression operation. The  problem of a compression 
operation, however, is to find one that does not result in an entropy loss. In addition, the conditioner 
may be used to hide skews in the raw data by applying, for example, a Linear Feedback Shift Register 
(LFSR) or using cryptographic mechanisms like a message digest.

• For noise sources, it is commonly suggested – and it is required for noise sources to be accepted by BSI 
according to the requirements set forth in [AIS2031] – to employ some form of health check to guard 
against total breakdown of the event recording or the operation of the measured phenomenon. 
Naturally, the health check cannot detect changes in the entropy rate delivered by the recording logic, 
for example, due to aging or negative influences from the environment. However, small statistical tests 
tailored to the entropy source can detect non-tolerable defects in the stochastic behavior of the noise 
source in a reasonable time window. An example of such a test is the Chi-Squared test.

• Finally, the output of the noise source is fed into a cryptographically secure DRNG that uses 
cryptographic primitives to generate data indistinguishable from an ideal random number generator. 
The following variations may be visible in that last stage for different implementations:

• The DRNG produces only data when an equal amount of true random data from the noise source is 
injected into the DRNG.

• The DRNG generates output even when not reseeded by the noise source for a period of time. When 
sufficient entropy is collected by the noise source, the DRNG is reseeded again.

With the general architecture description in mind, the Linux-RNG design is described in the following 
chapter.
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3 Design of the Linux-RNG

3.1 Historical Background

The initial implementation of the Linux-RNG was provided by Theodore Ts'o in 1994. The original design of 
the Linux-RNG is based on the US export restrictions on cryptography that were in place at that time.

Theodore Ts'o explained in a response ([T06]) to the work from Gutterman et al. ([GPR06]) that due to the US 
export restrictions enforced back then, the use of encryption mechanisms were discarded in favor of using 
the SHA-1 hash function (which is now replaced by a Blake2s message digest algorithm). Also, the Linux-
RNG was constructed so that in case of a break of the collision resistance of SHA-1 the Linux-RNG would 
not be compromised.

With the introduction of the ChaCha20 block operation to generate random numbers in the Linux kernel 
version 4.8, a departure from the long-standing design concept of using SHA-1 is evident. Finally, SHA-1 is 
removed completely with version 5.17 which uses a more modern Blake2s message digest algorithm instead.

Starting with version 5.18, the entire post-processing of the entropy data has been completely re-
implemented and all legacy concepts have been replaced. Any previous analyses on the deterministic 
processing are not applicable any more. Additional significant changes were incorporated with 5.18.12.

3.2 Linux-RNG Architecture

The Linux-RNG is a random number generator that uses hardware events detected by the Linux kernel as 
noise sources to feed a deterministic random number generator. A brief characterization of the operation of 
the Linux-RNG is provided in the following description.

The Linux-RNG uses one entropy pool, the input pool. Its purpose is to collect, and compress, and thus 
accumulate the entropy provided by the different noise sources. A ChaCha20 DRNG, the “base CRNG”, is 
seeded from the input pool. A set of secondary ChaCha20 DRNGs, one for each online CPU, are seeded from 
the base CRNG and provide the random bits for callers at the interfaces. User space interfaces of 
/dev/urandom, /dev/random, the system call getrandom and the in-kernel application programming 
interface (API) of get_random_bytes are available to pull random bits from the secondary DRNGs.

The term “entropy pool” in this document refers to Blake2s message digest instance as specified in 
[RFC7693]. The input function is a Blake2s hash update operation. The use of the hash update function 
mathematically implies that all data that is “inserted” into the entropy pool is concatenated into a long 
string which is then hashed. The output operation is a Blake2s hash final operation. Considering the state-
transition and output function, the processing of the data maintained by an entropy pool is fully 
deterministic in nature.

The ChaCha20 DRNG as used in this document is conceptually similar to an entropy pool: a memory buffer 
of 32 bytes in size which is the ChaCha20 key used to initialize a transient ChaCha20 instance to generate 
random bits. The cryptographic function ChaCha20 is used as a state-transition function as well as an 
output function. Its implementation is derived from [RFC7539], sections 2.1 to 2.3, where the random 
number is the key stream generated by the ChaCha20 block operation.

The Linux-RNG operation can be characterized as follows. After the occurrence of a hardware event, such as 
an interrupt, the event is awarded an entropy estimation by the Linux-RNG. The event time and the event 
value are hashed into the entropy pool, the Blake2s state. This entropy pool is called input pool. 

2 This is a stable kernel release. It is very unusual that non-bug fixes are added to stable releases. The entire 
new architecture is also backported to older “stable” kernels such as 5.15.44 even though the changes do not 
address security-critical issues.
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Upon request, this entropy pool feeds the DRNG based on the ChaCha20 block operation.

Albeit multiple secondary ChaCha20 DRNGs are used, they all behave identically regarding how random 
bits are generated for a caller. Yet, there are differences in the behavior of the different interfaces accessing 
the ChaCha20 DRNG instances. The key difference is the timing when random numbers are generated in 
relationship to the then current entropy level of the Linux-RNG:

• Unrestricted generation of random numbers is available with /dev/urandom and the in-kernel function 
get_random_bytes. This implies that irrespective whether the entropy pool or the ChaCha20 DRNG 
received sufficient entropy, random data is generated.

• When accessing /dev/random, random numbers are only generated if the entropy pool or the ChaCha20 
DRNG received at least 256 bits of initial entropy. After reaching that threshold of 256 bits of entropy 
once, /dev/random will operate non-blocking for the lifetime of the system and thus operate identically 
to /dev/urandom.

In addition, the Linux kernel offers the getrandom system call documented by its respective man page 
which provides access to the Linux-RNG as follows3:

• When invoking getrandom where the flag field is zero, the system call accesses the ChaCha20 DRNG 
identically to /dev/random.

• When invoking getrandom with a flag of GRND_INSECURE, the system call behaves like 
/dev/urandom.

• The flag GRND_RANDOM is currently unused.

When generating data from the input pool, a Blake2s hash final operation is performed. This implies that all 
data since the initialization of the pool is mathematically concatenated and then hashed. This resulting data 
is now processed by a construct which is similar to the [RFC5869] extract and expand mechanism, but with 
Blake2s instead of a HMAC-SHA2. In a first step, the extract phase, a new key is generated from the 
concatenated output from the input pool and the output of 256 bits from an optionally existing CPU-based 
random number generator like Intel’s RDSEED. The resulting message digest is used to re-initialize the 
Blake2s hash context for gathering the next data from the noise sources – the Blake2s state forming the 
input pool is re-initialized with a state derived from the previous state. The result of the extract phase is also 
used to perform an expand phase to generate random bits 32 bytes in size which are used to seed the 
ChaCha20 DRNG key with.

The ChaCha20 DRNG operates by invoking the ChaCha20 DRNG block operation repeatedly until the 
requested number of bytes are generated. Hence, the output function of this DRNG is based on the 
ChaCha20 block operation. The application of the ChaCha20 block operation changes the state of the DRNG 
as defined for ChaCha20 in [RFC7539], section 2.4: the counter value of the state is incremented by one after 
each ChaCha20 block operation. To ensure backtracking resistance, the fast-key-erasure approach specified 
in [FKE] is applied.

3.2.1 Linux-RNG Internal Design

The Linux-RNG maintains one entropy pool and a set of ChaCha20 DRNGs to collect, compress and 
maintain entropy. Figure 2 depicts the relationship between the entropy pool, the ChaCha20 DRNGs and the 
entropy sources. The arrows in this figure explain the flow of information.

3 At the time of writing the man page does not fully contain all details about GRND_INSECURE and 
GRND_RANDOM flags as their meaning were changed with kernel 5.6. The explanation in this document is 
consistent with the Linux kernel source code.
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Figure 2: Relationship of entropy pool, ChaCha20-DRNG and entropy 
sources

The following relationships are evident in figure 2:

• The input_pool is the entropy pool that collects and compresses the entropy from hardware events. That 
entropy pool is the Blake2s internal state and has a size of 256 bits. The purpose of the input pool is to 
collect and compress entropy from the noise sources and provide it to the deterministic random number 
generator discussed in the following bullet point.

• The base ChaCha20 DRNG obtains its seed data from the input pool with the purpose to provide a seed 
source to the second-level ChaCha20 DRNGs.

• The Linux RNG instantiates a second level ChaCha20 DRNG one for each online CPU in the system to 
have a CPU-local ChaCha20 DRNG instance. The second-level ChaCha20 DRNGs are seeded from the 
base ChaCha20 DRNG. When a caller requests random bits, the ChaCha20 DRNG instance for the CPU 
the caller currently executes on is used. Those are accessible through the following interfaces:

• from user space via /dev/random, /dev/urandom or the getrandom system call, and

• from kernel space via the get_random_bytes function.

The ChaCha20 DRNG has an internal state of 512 bits. However, only 256 bits, the key part of the ChaCha20 
state, are filled with random data. Further details about the maintenance of the ChaCha20 state are given in 
section 3.3.2.

The noise sources depicted by the gray boxes in figure 2 feed the input pool. According to this approach, the 
input pool collects the entropy from the noise source and compresses it.

The noise sources can be characterized as follows:

• Device drivers may provide data that the device driver author believes to contain some randomness via 
the add_device_randomness API. Discussions in later sections will explain that the Linux-RNG will 
use the data from this noise source, but treats it as having no entropy. Thus, the data is used to stir the 
internal state only.

• The Linux kernel implements device drivers for hardware random number generators. They may 
provide true random data via the add_hwgenerator_randomness API. Such hardware random 
number generators are available in specialized hardware only.

• HID such as keyboards or mice form the next noise source used by the Linux-RNG and may provide 
entropy via the add_input_randomness API. The data obtained by HID events such as a pressed key 
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or mouse movement is supplemented with a time stamp that the Linux-RNG obtains when an event 
arrives using the add_timer_randomness function.

• Hardware events pertaining to any kind of block devices such as hard disks are obtained by the Linux-
RNG with the add_disk_randomness API forming another noise source. Events cover read and 
write operations of a hard disk. Similarly to the HID noise source, the Linux-RNG adds a time stamp to 
each disk event by invoking the add_timer_randomness function. More details are provided in 
section 3.5.2.3 about the collection of data from block devices. At this point, however, it shall be noted 
that not all block devices will contribute as a noise source. For example, solid-state-drives (SSD) are not 
used as noise sources whereas hard disks with spinning disks are used as such.

• When an interrupt arrives, the Linux-RNG is triggered with the add_interrupt_randomness API. 
For each received interrupt, the Linux-RNG obtains a time stamp and supplemental data which is fed 
into a fast_pool instance that is local to the CPU on which the interrupt is processed. The use of fast_pool 
instead of injecting the data directly into the input pool is required to maintain performance. Receiving 
and processing an interrupt is a very performance-critical code path. Normal work loads trigger 
hundreds to thousands of interrupts each second where a complex operation would simply decrease the 
system performance significantly. Throughout this document, the fast_pool is considered to belong to 
the interrupt noise source. The discussion of the fast_pool indicated in figure 2 will be given in section 
3.5.2.2 as it is tightly integrated with the gathering of raw entropy from interrupts. Therefore, fast_pool is 
not considered as a stand-alone entropy pool or random number generator like the ones mentioned 
before.

• During boot time when a user space caller requests data from /dev/random or the getrandom system 
call and the Linux-RNG has not yet obtained 256 bits of entropy, the Linux-RNG tries to generate 
entropy from the interaction of a high-resolution timer and the Linux kernel scheduler. For this, the 
kernel first verifies whether it has a high-resolution time stamp. If so, it kicks off the entropy generation 
logic which runs in parallel with the remainder of the Linux-RNG operation. If the entropy generation 
fails, the entropy pool will not gain any additional data and the entropy estimator remains unchanged.

The input pool together with the noise sources form a NDRNG in its own right. The ChaCha20 DRNG is a 
separate random number generator in the Linux-RNG which is seeded by the input pool. The input pool 
will exclusively deliver data to the ChaCha20 DRNG which implies that a caller will never obtain data from 
the input pool directly.

3.3 Deterministic Random Number Generators (DRNGs)

The Linux-RNG entropy pool of the input pool can be considered as a DRNG when disregarding the noise 
sources. This section discusses the state maintenance of the deterministic operation of the entropy pool as 
well as the ChaCha20 DRNG. 

3.3.1 Entropy Pool input pool

The random number generator implementation maintains a state memory block for the input pool which is 
technically equal to a Blake2s state h as defined by the Blake2s algorithm. The pool is governed by a 
structure which contains the following important information:

static struct {

struct blake2s_state hash;

spinlock_t lock;

unsigned int init_bits;

} input_pool = {
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.hash.h = { BLAKE2S_IV0 ^ (0x01010000 | BLAKE2S_HASH_SIZE),

  BLAKE2S_IV1, BLAKE2S_IV2, BLAKE2S_IV3, BLAKE2S_IV4,

  BLAKE2S_IV5, BLAKE2S_IV6, BLAKE2S_IV7 },

.hash.outlen = BLAKE2S_HASH_SIZE,

The member variables’ relevance is discussed in the following bulleted list:

The member variable hash holds the Blake2s state. Besides containing the actual message digest state h, it 
contains some auxiliary variables used to implement the actual Blake2s algorithm. These auxiliary member 
variables are of no relevance to the operation of the Linux-RNG and thus are not further considered in the 
analysis. Yet, [RFC7693] outlines the auxiliary information required to implement a Blake2s message digest. 
The message digest state h is initialized at compile time with the initialization vectors as defined by 
[RFC7693] section 2.6 and the XORing of the 0x01010000 defining the first parameter block as defined in 
[RFC7693] section 2.5 for unkeyed hashing as well as section 3.2.

• The lock member variable is a spinlock which is used to serialize operations on the Blake2s state. These 
operations include adding of data, i.e. performing a hash update operation, or extracting data from the 
Blake2s state by performing a hash final operation followed by a hash init operation.

• The member variable init_bits is used to track the amount of entropy in bits inserted into the 
entropy pool. As outlined in section 3.3.1.2, this variable is only used during initialization until 256 bits of 
entropy initially have been collected. Afterwards entropy is not tracked any more.

3.3.1.1 Entropy Pool State Transition Function

The state transition function, i.e. the function used when new data is inserted into the entropy pool, is the 
Blake2s update function as outlined in [RFC7693] section 3.2 with the compression function F which also 
uses the mixing function G specified in [RFC7693] section 3.1 as part of its operation.

The state transition function can be characterized with the left part of figure 3. This illustration shows that 
the entropy pool maintenance mathematically calculates a Blake2s message digest of all data that is inserted 
into the entropy pool since its initialization.
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Blake2s Update

Blake2s Update

Blake2s Final

Blake2s Init

Kernel start

...

User Space 
Writes 
IOCTL

Input pool

0CPU

add_timer_ 
randomness

Blake2s Hash

1CPU

Blake2s Hash

Base Key(n)

Expand Phase

Figure 3: Entropy Pool Maintenance

Considering figure 3, the insertion of data into the pool implemented by the function _mix_pool_bytes 
is simply a Blake2s update operation:
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static void _mix_pool_bytes(const void *buf, size_t len)

{

blake2s_update(&input_pool.hash, buf, len);

}

The lower and right part of figure 3 illustrates the output function which is discussed in section 3.3.1.3.

3.3.1.2 Entropy Estimator

Before discussing the data generation, the aspect of entropy estimation must be discussed at this point. The 
Linux-RNG maintains a separate integer value, the entropy estimator. This integer value is intended to hold 
the amount of entropy present in the entropy pool during initialization time until the entropy pool is 
defined to be fully seeded with 256 bits of entropy.

The entropy estimator is an integer value which is incremented by the amount of bits of entropy the 
different noise sources report when they add entropy data. Yet, it is never decremented. Thus, its purpose is 
only to detect how much entropy was collected during boot time until reaching the threshold of 256 bits of 
entropy.

During incrementing the entropy estimator its value is checked and the following states are defined in the 
function _credit_init_bits:

• CRNG_EMPTY: The entropy pool received none or little entropy. All interfaces that may block as 
specified in section 3.4 are gated and continue to block. The base ChaCha20 DRNG is reseeded from the 
entropy pool during each request for random bits.

• CRNG_EARLY: The entropy pool collectively received 128 bits of entropy from all noise sources. All 
interfaces that may block as specified in section 3.4 are gated and continue to block. Yet, the constant 
reseeding of the base ChaCha20 DRNG is stopped.

• CRNG_READY: The entropy pool collectively received 256 bits of entropy from all noise sources. Upon 
reaching this threshold the base ChaCha20 DRNG is forced to be reseeded. Also all blocking interfaces are 
now released. Callers that registered to be informed when the Linux RNG becomes fully seeded are 
notified.

After reaching the CRNG_READY state, the entropy estimator is not used any more. Even if noise sources 
increment it, its value is never processed any more.

3.3.1.3 Entropy Pool Output Function

The extraction of random numbers from the entropy pool is implemented with the function 
extract_entropy. This function extracts data from the input pool.

The extraction operation is illustrated in figure 3 with the lower and right parts. Mathematically the output 
function follows the extract and expand function concept that is defined in [RFC5869] for HMAC-SHA-
based keyed message digests. However, instead of using HMAC-SHA, Blake2s is used. As Blake2s is also a 
keyed message digest, it can follow the concept outlined in the mentioned RFC.

The following steps are performed as part of the output function:

1. The message digest of the entropy pool is calculated by invoking the Blake2s final operation.

2. 256 bits of random data is attempted to be collected from CPU-based entropy sources like RDSEED. On 
Intel systems, if RDSEED is not available, RDRAND is used. If no CPU-based entropy source is present the 
CPU’s high-resolution timer is used to fill the buffer.
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3. Depending on the operating system being 32 bit or 64 bit, a 32 bit or 64 bit integer operating as a counter 
set to 0 is initialized.

4. Now, the extract phase is performed by calculating a Blake2s keyed message digest using the data from 
step 1 as a key and the concatenated data from steps 2 and 3 as message data.

5. The message digest from step 4 is used to re-initialize the Blake2s state forming the entropy pool. The re-
initialization uses the message digest as a key which implies that from this point on the entropy pool is 
managed as keyed message digest. This means that the first generation of the entropy pool immediately 
after power-on is an unkeyed version of Blake2s whereas all subsequent generations of the entropy pool 
operate as keyed Blake2s message digests.

6. The same message digest obtained in step 4 is also used to perform the expand phase. This expand phase 
is initializing a new Blake2s keyed message digest with the output from step 4 as key and the data 
obtained from step 2 and the counter from step 3 incremented by one as data.

7. The message digest generated in step 6 is now the output data. Although technically the expand phase is 
able to iterate step 6 as often as needed by incrementing the counter by one during each loop to generate 
arbitrary numbers of bits, all callers of the output function request exactly 256 bits of data, i.e. one 
Blake2s output block.

3.3.1.4 Initialization

When the Linux-RNG is initialized, the entropy pool and the ChaCha20 DRNG are initialized to prevent 
them from being empty. The initialization is performed during boot time of the kernel.

When the kernel initializes the driver for the random number generator, it calls the function 
random_init.

static void init_std_data(void)

{

ktime_t now = ktime_get_real();

...

#if defined(LATENT_ENTROPY_PLUGIN)

static const u8 compiletime_seed[BLAKE2S_BLOCK_SIZE] 
__initconst __latent_entropy;

_mix_pool_bytes(compiletime_seed, sizeof(compiletime_seed));

#endif

for (i = 0, arch_bytes = BLAKE2S_BLOCK_SIZE;

     i < BLAKE2S_BLOCK_SIZE; i += sizeof(entropy)) {

if (!arch_get_random_seed_long_early(&entropy) &&

    !arch_get_random_long_early(&entropy)) {

entropy = random_get_entropy();

arch_bytes -= sizeof(entropy);

}

_mix_pool_bytes(&entropy, sizeof(entropy));
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}

_mix_pool_bytes(&now, sizeof(now));

_mix_pool_bytes(utsname(), sizeof(*(utsname())));

_mix_pool_bytes(command_line, strlen(command_line));

add_latent_entropy();

}

The function random_init performs the following initialization steps.

As a first step, the function obtains the current time and mixes it into the entropy pool. The entropy pool is 
not empty, but contains the contents of the memory allocated for the pool. As the pool is statically allocated 
and the memory is occupied during early boot process, it is likely that it contains zeros. The resolution of 
that time value is discussed in the kernel code:

/*      

 * ktime_t:

 *

 * On 64-bit CPUs a single 64-bit variable is used to store the hrtimers

 * internal representation of time values in scalar nanoseconds. The

 * design plays out best on 64-bit CPUs, where most conversions are

 * NOPs and most arithmetic ktime_t operations are plain arithmetic

 * operations.

 *      

 * On 32-bit CPUs an optimized representation of the timespec structure

 * is used to avoid expensive conversions from and to timespecs. The

 * endian-aware order of the tv struct members is choosen to allow

 * mathematical operations on the tv64 member of the union too, which

 * for certain operations produces better code.

 *

 * For architectures with efficient support for 64/32-bit conversions the

 * plain scalar nanosecond based representation can be selected by the

 * config switch CONFIG_KTIME_SCALAR.

 */

In case a CPU random number generator is known to the Linux-RNG, data from that hardware RNG is 
mixed into the entropy pool in a second step.

In a next step, the initialization operation obtains the system-specific information and mixes the collected 
data into the entropy pool. The collected data contains the following information which is also explained in 
the man page uname(2):

• Operating system name (e.g. “Linux” – this is a compile time variable)

• Name within “some implementation-defined network” (such as the DNS hostname – at the time of 
initialization of the Linux-RNG, this variable is not set)
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• Operating system release (e.g. 5.18.1 for the kernel version of 5.18.1 – this is a compile-time variable)

• Operating system version (this is a compile-time variable)

• Hardware identifier (such as “x86_64” – this is a compile time variable)

• Domainname when the operating system is part of a NIS or Yellow-Pages network infrastructure (at the 
time of initialization of the Linux-RNG, this variable is not set)

Subsequently, the kernel command line string is inserted into the entropy pool to stir it a bit more.

Finally the data from the latent entropy GCC plugin is inserted into the entropy pool. See section 3.5.2.9 for 
more details on this data.

3.3.2 ChaCha20 DRNG

The ChaCha20 DRNG is based on the identically named stream cipher developed by Daniel Bernstein 
[CHACHA20]. The ChaCha20 DRNG uses a data structure that complies with the definition of [RFC7539], 
section 2.3.

To maintain a ChaCha20 DRNG, the Linux RNG only stores the ChaCha20 key with the following data 
structure used for the base ChaCha20 DRNG:

static struct {

u8 key[CHACHA_KEY_SIZE] __aligned(__alignof__(long));

unsigned long birth;

unsigned long generation;

spinlock_t lock;

} base_crng

The member variables are used to store the following information:

• The key buffer of 256 bits holds the ChaCha20 key used to initialize a transient ChaCha20 block 
operation state.

• The birth variable contains the time when the ChaCha20 DRNG was seeded last. The ChaCha20 DRNG 
is automatically reseeded after 60 seconds irrespective of the amount of data produced by the DRNG.

• The generation variable is used to determine the reseed time of the secondary ChaCha20 DRNGs. Its 
purpose is discussed below. This variable is incremented by one every time the base ChaCha20 DRNG is 
(re)seeded.

• Finally, a spinlock is used with the lock variable to serialize the operations on this state.

The secondary ChaCha20 DRNGs are maintained with an even smaller state:

struct crng {

u8 key[CHACHA_KEY_SIZE];

unsigned long generation;

local_lock_t lock;

};

The member variables are identical in their purpose as outlined for the base ChaCha20 DRNG state. The 
difference is that the last reseed time is not maintained. This is due to the following link concept between 
the base ChaCha20 DRNG and each secondary ChaCha20 DRNG. Every ChaCha20 DRNG seeds from the 
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base ChaCha20 DRNG which implies that 256 bits are generated by the base DRNG. After the seeding the 
secondary ChaCha20 DRNG operates independently. However, every time the transient ChaCha20 block 
operation instance is formed using the ChaCha20 DRNG key, the Linux RNG checks whether the 
generation of the current secondary ChaCha20 DRNG is equal to the generation of the base 
ChaCha20 DRNG. If not, the secondary ChaCha20 DRNGs are (re)seeded from the base ChaCha20 DRNG. 
This implies always when the base ChaCha20 DRNG is seeded, all secondary ChaCha20 DRNGs are reseeded 
at the time the next random bits are to be generated.

One important exception to the mentioned rule is present: until the base ChaCha20 DRNG is fully seeded, 
any request for random numbers is solely satisfied by the base ChaCha20 DRNG. At this time, the secondary 
ChaCha20 DRNG instances are not available.

Considering the state information above maintained for each DRNG, it is now required to explain how this 
state is used to generate random bits. The function _get_random_bytes defines a stack variable that holds the 
ChaCha20 block operation state as defined in [RFC7539] section 2.3. The state is filled as follows:

• using the constants as defined in section 2.3 [RFC7539],

• using the value of the aforementioned ChaCha20 DRNG state variable key, and

• initializing the counter as well as the nonce values to zero.

Using this transient ChaCha20 block operation state, the ChaCha20 block operation as defined in section 
2.3.1 [RFC7539] is invoked as often as needed to generate the requested amount of output bits.

The relationship of the base ChaCha20 DRNG with one instance of the secondary DRNGs as well as how 
random bits are produced is outlined with figure 4.

The illustration in figure 4 shows three phases:

1. The light green left-most part depicts the seeding of the secondary ChaCha20. This seeding operation 
instantiates a ChaCha20 block operation from the base ChaCha20 DRNG key via the fast-key-erasure 
approach outlined in section 3.3.2.2.

2. The orange middle part illustrates the instantiation of a ChaCha20 block operation from a secondary 
ChaCha20 DRNG key via the fast-key-erasure approach to fulfill a request of random bits. Each output 
from a ChaCha20 block round is concatenated. The ChaCha20 block operation is repeated as often as 
needed to produce the requested amount of bits.

3. The light yellow right-most part illustrates a second request for random bits fulfilled by the secondary 
ChaCha20 DRNG. This request is handled identically to step 2.
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Figure 4: ChaCha20 DRNG Operation and Base DRNG to Secondary DRNG Relationship
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3.3.2.1 (Re)Seeding of ChaCha20 DRNG

Irrespective of an initial seeding or reseeding the same operation is performed as follows:

• Base ChaCha20 DRNG: 256 bits are obtained from the entropy pool using the operation outlined in 
section 3.3.1.3. This value is used to overwrite the key value in the base_crng data structure.

• Secondary ChaCha20 DRNG: 256 bits are obtained using the fast-key-erasure instantiation of the base 
ChaCha20 DRNG which is used to overwrite the key value in the respective crng data structure instance 
of the secondary DRNG to be reseeded.

The question arises whether overwriting the old key value is appropriate. The entropy pool management 
ensures a link of the different generations of the entropy pool by generating a Blake2s key from the 
previous entropy pool state to initialize the new entropy pool state. Thus the seed data for the base 
ChaCha20 DRNG contains also the information of historic events from the entropy pool output function. 
Similarly, when seeding a secondary ChaCha20 DRNG, the implicit event history present in the base 
ChaCha20 DRNG based on its seed is inserted into the secondary DRNG.

Therefore, the overwriting of the key is not considered to destroy historic information which may be used 
to smooth over temporary deficiencies in the noise sources.

The function crng_has_old_seed forces the reseed of the base ChaCha20 DRNG. The reseeding of the 
base ChaCha20 DRNG is forced at runtime during the first request for random numbers after the elapse of 
60 seconds since the last reseed. During the first 2 minutes after the kernel was booted, the reseeding is 
performed much more frequently. The check for seeding is again performed at the time random bits are to 
be generated. The reseeding is performed proportionally to the numbers of seconds since boot: every (n + 
n/2) seconds after reboot the reseeding is triggered where n is the number of seconds since boot.

3.3.2.2 Fast-Key-Erasure ChaCha20 DRNG

The fast-key-erasure approach implemented by the Linux RNG is based on the approach outlined in [FKE]. 
The mechanism is applied when a ChaCha20 block operation instance shall be created from a given 
ChaCha20 DRNG key:

1. The ChaCha20 block operation instance is initialized using the key of the ChaCha20 DRNG state.

2. Invoke the ChaCha20 block function to generate a 512 bit output block from that state.

3. The 256 most significant bits (MSB) of the block obtained in step 2 are used to replace the key in the used 
ChaCha20 DRNG state. This new key is used for a next DRNG generate request. This also implies that 
once the transient ChaCha20 block operation state is erased, backtracking resistance is guaranteed as it is 
impossible for an attacker to deduce the generated bits from the existing memory content.

4. The 256 least significant bits (LSB) are returned to the caller. These bits are either used to seed the 
secondary ChaCha20 DRNG in case the current DRNG is the base ChaCha20 DRNG, or these are already 
the first 256 output bits that can be returned to a caller in case of a secondary ChaCha20 DRNG.

The fast-key-erasure approach is illustrated in figure 4 with the colors of the newly generated keys for n+1 
or n+2. The L2 Key(n) in figure 4 has the color green to orange illustrating that it was generated during the 
green stage of seeding the secondary DRNG but is used to instantiate the orange ChaCha20 block operation 
instance used to fulfill the first request for random bits.

3.3.2.3 Generation of Random Numbers

When random numbers are to be generated, the following function is used:

static void _get_random_bytes(void *buf, size_t len)
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{

u32 chacha_state[CHACHA_STATE_WORDS];

u8 tmp[CHACHA_BLOCK_SIZE];

size_t first_block_len;

if (!len)

return;

first_block_len = min_t(size_t, 32, len);

crng_make_state(chacha_state, buf, first_block_len);

len -= first_block_len;

buf += first_block_len;

while (len) {

if (len < CHACHA_BLOCK_SIZE) {

chacha20_block(chacha_state, tmp);

memcpy(buf, tmp, len);

memzero_explicit(tmp, sizeof(tmp));

break;

}

chacha20_block(chacha_state, buf);

if (unlikely(chacha_state[12] == 0))

++chacha_state[13];

len -= CHACHA_BLOCK_SIZE;

buf += CHACHA_BLOCK_SIZE;

}

memzero_explicit(chacha_state, sizeof(chacha_state));

}

The function performs the following steps:

1. Perform the fast-key-erasure operation to instantiate a ChaCha20 block operation algorithm, generate a 
new key for the next ChaCha20 block operation instantiation and return 256 bits of random data. Details 
are documented in section 3.3.2.2.

2. Return the random data that are obtained during the fast-key-erasure operation in step 1. 
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3. If the amount of random data is not yet sufficient to cover the caller’s request a loop is started to invoke 
the ChaCha20 block generation operation repeatedly with the ChaCha20 block operation instance to 
generate as many random bits as required.

4. Zeroize the ChaCha20 block operation state.

This function is the service function to handle in-kernel users. The interface function 
get_random_bytes_user performs the exact same operation with the addition that the generated 
random bits are copied to the user space buffer pointed to by the user space caller.

3.4 Interfaces to Linux-RNG

3.4.1 Character Device Files

The devices /dev/random and /dev/urandom are registered by providing file operations data structures 
linking the system call operations with the service functions. The data structures contain pointers to the 
respective call-back functions implemented by the Linux-RNG which are made known to the system call 
handler functions. Both devices are linked with the kernel-internal functions handling read, write and other 
types of requests on these character device files with the following code:

static const struct memdev {

        const char *name;

        mode_t mode;                

        const struct file_operations *fops;

        struct backing_dev_info *dev_info;

} devlist[] = { 

...

         [8] = { "random", 0666, &random_fops, NULL },

         [9] = { "urandom", 0666, &urandom_fops, NULL },

...

};

The code shows that for the /dev/random device file, a function pointer data structure random_fops is 
registered. This function pointer data structure contains the handler functions implementing the kernel-
side read and write operations that are triggered when user space performs a read or write on /dev/random. 
The device file of /dev/random is defined to be created with world-read/writable Unix permission bits. The 
same is done for the /dev/urandom device where the function pointer data structure of urandom_fops is 
registered.

The devices stored in devlist are all registered during kernel boot with the chr_dev_init function.

The callback functions registered for /dev/random are:

const struct file_operations random_fops = { 

        .read  = random_read_iter,

        .write = random_write_iter,

        .poll  = random_poll,
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        .unlocked_ioctl = random_ioctl,

...

        .fasync = random_fasync,

        .llseek = noop_llseek,

...

};

Similarly, the callback functions for /dev/urandom are:

const struct file_operations urandom_fops = {

        .read  = urandom_read_iter,

        .write = random_write_iter,

        .unlocked_ioctl = random_ioctl,

...

        .fasync = random_fasync,

        .llseek = noop_llseek,

...

};

These functions referenced in the random_fops and urandom_fops are all implemented as part of the 
Linux-RNG and are discussed in the following subsections.

3.4.1.1 random_poll

The random_poll function registered in the function pointer data structures is invoked when user space 
uses the poll system call with /dev/random.

The poll system call implementation allows processes to be triggered on two occasions, depending on the 
poll system call request type invoked by user space as follows:

• read: When sufficient entropy is available indicated by the fact that the ChaCha20 DRNG is fully seeded, 
the kernel wakes up the polling processes to allow them obtaining data with a separate call. This allows 
user space to asynchronously poll /dev/random to avoid the blocking behavior when reading 
/dev/random in case the entropy is not fully seeded with 256 bits. After the ChaCha20 DRNG is fully 
seeded, the read poll will always return successfully until the next reboot. The read-like poll is applied 
when the caller uses the POLLIN option as discussed in the poll man page. This operation is also used 
when user space uses the select system call to sleep until the fully seeded event occurs.

• write: When insufficient entropy is available during initialization time until reaching 256 bits of entropy, 
the kernel wakes up the waiting processes with a write poll. Any subsequent write poll operations after 
256 bits of initial entropy have been received will never wake up the caller. This implies that the Linux-
RNG interface of /proc/sys/kernel/random/write_wakeup_threshold is available, but not enforced any 
more. The write-like poll is applied when the caller uses the POLLOUT option as discussed in the poll 
man page.
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3.4.1.2 Read and Write Operation

For entropy extraction via the device files, the kernel implements the following methods. These methods 
are referenced by the aforementioned function pointer data structures.

/dev/random: When accessing the random number generator using this device file, the read function of 
random_read_iter is called. This function blocks the caller until the ChaCha20 DRNG is fully seeded. 
Once that happened, random numbers are generated identically to /dev/urandom outlined below. 

/dev/urandom: When random data is extracted via /dev/urandom, the ChaCha20 output function 
get_random_bytes_user discussed in section 3.3.2.3 is invoked.

The write service function is identical for both devices. The random number device driver allows writing of 
data into the /dev/random and /dev/urandom device files. Both devices use the same function to 
implement the write method: random_write_iter. random_write_iter calls the 
write_pool_user service function which mixes the data provided by user space with the input pool. 
The entropy estimator is not changed when mixing data into the entropy pool using the write operation.

static ssize_t write_pool_user(struct iov_iter *iter)

{

u8 block[BLAKE2S_BLOCK_SIZE];

...

for (;;) {

copied = copy_from_iter(block, sizeof(block), iter);

ret += copied;

mix_pool_bytes(block, copied);

...

memzero_explicit(block, sizeof(block));

...

The code listing shows that the user space data is mixed into the pool in 32 byte chunks using the 
functionality outlined in section 3.3.1.1.

3.4.1.3 Input/Output Controls (IOCTLs) Usable With Device Files

Both device files implement the following IOCTL commands which are usable with the ioctl system call:

• RNDGETENTCNT: Extraction of the entropy estimator value for the input pool. This IOCTL is identical to 
the contents of /proc/sys/kernel/random/entropy_avail.

• RNDADDTOENTCNT: Add a user space supplied integer value to the entropy estimator for the input pool 
discussed in section 3.3.1.2. This IOCTL is restricted to the capability of CAP_SYS_ADMIN, which is 
only given to administrative processes.

• RNDADDENTROPY: Mix in random user space supplied data into the input pool using the same logic as 
outlined in section 3.4.1.2. In addition, add a user space supplied integer value to the entropy estimator 
for the input pool in section 3.3.1.2. This IOCTL is restricted to the capability of CAP_SYS_ADMIN.

• RNDZAPENTCNT: This IOCTL has no effect any more.

• RNDCLEARPOOL: This IOCTL has no effect any more.
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• RNDRESEEDCRNG: If the caller possesses the capability of CAP_SYS_ADMIN, the base ChaCha20 DRNG 
is reseeded. In addition, all secondary ChaCha20 DRNG instances will be reseeded the next time they are 
used as forced by the management of the DRNG generation outlined in section 3.3.2.

3.4.2 System Call

In addition to the character device files of /dev/random and /dev/urandom, the Linux-RNG offers the 
getrandom system call to user space for obtaining random data. This system call uses three parameters: 
the first and second parameter allow the caller to supply the buffer pointer and the size of the buffer that 
shall receive the random data. The third parameter flags allow the caller to define:

• GRND_RANDOM – This flag is currently unused.

• GRND_NONBLOCK – By default getrandom blocks if the ChaCha20 DRNG is not fully seeded. If the 
GRND_NONBLOCK flag is set, then getrandom does not block in these cases, but instead immediately 
returns -1 with errno set to EAGAIN. In case of this error code, no random bits are returned.

• GRND_INSECURE – When using this flag, the getrandom system call behaves like /dev/urandom by 
delivering data irrespective whether the ChaCha20 DRNG is fully seeded.

When invoking the getrandom system call without any flags, it behaves identically to /dev/random: it 
blocks the caller and does not return random data until the ChaCha20 DRNG is considered to be fully 
seeded. After reaching this state, getrandom will not block any more and generate unlimited amounts of 
random data.

The advantage of using the getrandom system call over accessing the character device files is the 
exclusion of the Linux kernel virtual file system (VFS) layer. That layer adds huge complexity which may be 
the cause of errors returned to users. These errors may have no relationship to the Linux-RNG operation. 
Thus, the system call allows bypassing the VFS which is not of relevance to the Linux-RNG.

3.4.3 In-Kernel Interfaces

To supply in-kernel consumers such as the kernel crypto API or the networking stack with entropy, the 
Linux-RNG offers the function get_random_bytes. This function behaves exactly like /dev/urandom 
for user space as it delivers the requested amount of random data irrespective of the seed status of the 
entropy pool. The function get_random_bytes requires the following arguments: a pointer to the 
buffer and the size of the buffer to be filled with random data. The call to this function will always succeed.

In addition, functions filling an unsigned int variable, i.e. a variable with 4 bytes, and an unsigned long long 
variable, i.e. an 8-byte variable, with random bytes efficiently is provided with the API calls of 
get_random_u32 and get_random_u64, respectively. The kernel maintains one memory block of 1.5 times 
the block size of ChaCha20 (768 bits) on each CPU – the reason for this value is that 256 bits from the fast-
key-erasure operation specified in section 3.3.2.2 plus one full ChaCha20 block can be maintained. The CPU-
local buffer allows a lock-less access of the memory. When using these APIs, the ChaCha20 DRNG is used to 
fill the respective CPU-local buffer. After filling the CPU-local buffer, the needed 4 or 8 random bytes are 
copied from that buffer to the caller. The kernel remembers which bytes of the CPU-local buffer have 
already been given to callers. In a next call of the API, the kernel returns the next unused 4 or 8 bytes to the 
caller. This is continued until all random data in the CPU-local buffer is used which will trigger a new 
invocation to the ChaCha20 DRNG to overwrite the respective CPU-local buffer.

During boot time, a number of in-kernel callers request random numbers from the Linux-RNG. The author 
of this study performed some measurements on how many bytes are requested by in-kernel users during 
boot time before even user space is booted. Depending on the kernel functions and hardware support 
present in the underlying system, the number of bytes can be up to 1,000 bytes. Considering the work of this 
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study, quantitative testing shows that the Linux-RNG will not be seeded with sufficient data at that point, 
which implies that these callers receive random data with questionable entropy. Luckily, none of the callers 
that were identified use the random numbers for cryptographic purposes. Often, these random numbers are 
used to initialize hash maps, universally unique identifies (UUIDs), initial values for networking-related 
operations and similar items.

Although the kernel does not offer an equivalent to /dev/random inside the kernel, it offers an interface 
that is conceptually similar to the getrandom system call where the caller only receives random data after 
the primary ChaCha20 DRNG has been fully seeded. The difference, however, is that an in-kernel caller may 
not be blocked like user space processes. The concept rests on the function 
register_random_ready_notifier offered by the Linux-RNG to in-kernel users. This function 
allows callers to register a callback function that is invoked when the primary ChaCha20 reaches the fully 
seeded state.

In addition, the kernel offers the service functions of get_random_XXX_wait, where XXX refers to 
either u32, u64, int or long to generate random numbers and put it into the provided buffers with the 
respective data type. The waiting operation is identical to the waiting operation defined for /dev/random. 
However, at the time of writing these functions are not used in the kernel code base.

The reader should note that using get_random_bytes without any precautions does not guarantee that 
sufficient entropy has been collected to generate cryptographically strong random numbers. 

The behavior of register_random_ready_notifier is asynchronous in nature. A synchronous 
waiting until the ChaCha20 is initially seeded is provided with the API call of 
wait_for_random_bytes. This function will put the caller to sleep as long as the ChaCha20 DRNG is 
not initially seeded. Once the initially seeding threshold is reached, the caller is woken up. At that point, the 
caller can now invoke the get_random_bytes API call to obtain random data from the initially seeded 
ChaCha20 DRNG. When this function is called, the scheduler-based entropy generation is started.

3.4.4 /proc Files

The following /proc files are provided by the Linux-RNG to allow all users to read status information and to 
allow administrators to alter the behavior of the Linux-RNG. More information can be obtained with the 
random man page.

• /proc/sys/kernel/random/poolsize: size of the input pool in bits, i.e. 256 bits.

• /proc/sys/kernel/random/entropy_avail: current state of the entropy estimator of the input pool. The 
entropy estimator is adjusted to show the entropy content in bits.

• /proc/sys/kernel/random/write_wakeup_threshold: This interface returns the number of bits when the 
Linux-RNG is considered to be fully seeded, i.e. 256 bits. It can be modified from user space, but this 
modification does not alter the Linux-RNG behavior.

• /proc/sys/kernel/random/boot_id: UUID generated during boot.

• /proc/sys/kernel/random/uuid: UUID that is re-generated during each request.

• /proc/sys/kernel/random/urandom_min_reseed_secs: This interface returns the number of seconds 
when the Linux-RNG is reseeded during runtime, i.e. 60 seconds. It can be modified by user space, but 
this modification does not alter the Linux-RNG behavior.

Most of the proc files are read-only: the file permission settings do not allow a write operation and the 
kernel does not implement a write-handler. The files containing the threshold values are writable by the 
root-user only.

30 Federal Office for Information Security



Design of the Linux-RNG 3
Fully tested Linux Kernel Version: 5.18.1 Documented Linux Kernel Version: 5.18.1

3.5 Entropy Sources

The purpose of the Linux random number generator is to:

• collect entropy from various sources,

• mix gathered input values into the input pool, and

• estimate the obtained entropy during boot time.

The following sections discuss these aspects.

Data that is believed to contain entropy and contribute to the entropy collection of the Linux-RNG is 
specifically marked such that the reader can immediately identify such data.

3.5.1 Timer State Maintenance for Entropy Sources

Each hardware entropy source maintains a timer state. That state is used to store the time deltas as well as 
the time of the last hardware event occurrence.

The timer state keeps the following information:

struct timer_rand_state {

        cycles_t last_time;

        long last_delta, last_delta2;

};

The variables last_time, last_delta and last_delta2 are used for the entropy calculation to 
support the calculation of time deltas discussed in section 3.6.

According to figure 2 the kernel maintains several classes of entropy sources. For three of these classes, the 
kernel instantiates a timer state data structure.

HID, i.e. devices that are defined as being the ”console” of the system: the kernel maintains one instance of 
the timer state data structure for the collection of all HID devices. Therefore, the time deltas of events of all 
HID devices are stored together which implies that the collection of all HID devices are used as one entropy 
source. The instance is defined in the code with the static variable:

static struct timer_rand_state input_timer_state = { INITIAL_JIFFIES };

Disk devices: the kernel maintains one time state data structure instance per physical disk. Therefore, the 
time deltas of events triggered by one disk are maintained separately. This implies that one physical disk 
represents one independent entropy source4. The following code listing shows how the timer state data 
structure is instantiated per disk by allocating the required amount of memory and registering it with the 
per-disk data structure maintained by the kernel for each disk instance:

void __cold rand_initialize_disk(struct gendisk *disk)

{

        struct timer_rand_state *state;

        /*

         * If kzalloc returns null, we just won't use that entropy

4 The allocation of the time state data structure is performed irrespective of whether a block device is 
considered to contribute entropy or not as discussed in section 3.5.2.3.
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         * source.

         */

        state = kzalloc(sizeof(struct timer_rand_state), GFP_KERNEL);

        if (state) {

                state->last_time = INITIAL_JIFFIES;

                disk->random = state;

        }

}

Interrupts: the kernel sets up one fast_pool instance per CPU accessible in a per-CPU variable 
irq_randomness. The idea is that any operation on the fast_pool instance can be performed without 
holding a lock. The fast pool is defined as follows:

struct fast_pool {

struct work_struct mix;

unsigned long pool[4];

unsigned long last;

unsigned int count;

};

static DEFINE_PER_CPU(struct fast_pool, irq_randomness) = {

#ifdef CONFIG_64BIT

#define FASTMIX_PERM SIPHASH_PERMUTATION

.pool = { SIPHASH_CONST_0, SIPHASH_CONST_1, SIPHASH_CONST_2, 
SIPHASH_CONST_3 }

#else

#define FASTMIX_PERM HSIPHASH_PERMUTATION

.pool = { HSIPHASH_CONST_0, HSIPHASH_CONST_1, HSIPHASH_CONST_2, 
HSIPHASH_CONST_3 }

#endif

};

The pool array holds the actual entropy data and constitutes the pool. The last variable holds the time 
when the fast_pool was read last to inject its data into the input pool. The content of the fast_pool is not 
transferred to the input pool if the last operation is less than one second ago. The count variable counts the 
number of interrupts processed by this fast_pool to ensure that when receiving at least 64 interrupts since 
the last transfer the fast_pool can be transferred to the input pool. The macro DEFINE_PER_CPU implies 
that an instance of the fast_pool data structure is allocated for each CPU.

The initialization already indicates how the fast pool is maintained: it is processed as a SipHash as defined in 
[SIPHASH]. Yet, on 32 bit systems, the fast pool state is defined to consist of four 32 bit words whereas on 64 
bit systems, the fast pool consists of four 64 bit words. This implies that on 32 bit systems at most 128 bits of 
data can be processed.
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3.5.2 Entropy Collection

The random number generator exports service functions which are placed at well-defined locations in the 
kernel code to obtain hardware-related events. These events and the time stamp when these events occur 
are used to stir the input pool and to potentially increase its entropy estimator.

As depicted in figure 2, various entropy collection functions are defined for different classes of hardware 
events. The following sections discuss the individual entropy collection functions.

The specially marked values identified in the subsequent subsections identify the raw entropy which is 
added to the input pool. The term raw entropy references the entropy content of events. Per definition, 
entropy cannot be measured, yet the Linux-RNG wants to quantify the amount of entropy that it receives 
from its noise sources. The quantification of entropy can only be performed using a heuristic approach 
which attributes an entropy estimate to the data received from the noise sources. The quality of this raw 
entropy relative to the heuristically assumed entropy for each event defines the strength of this RNG. When 
the heuristic entropy value is smaller than the raw entropy, the available entropy is underestimated, i.e. the 
Linux-RNG would be considered conservative and thus would certainly have the cryptographic strength 
identified by the entropy estimator. On the other hand, if the heuristic entropy value is larger than the raw 
entropy, the Linux-RNG would overestimate the available entropy. In this case, the random numbers 
produced by the Linux-RNG would not be as cryptographically strong as indicated by the entropy estimator.

3.5.2.1 add_input_randomness

The input layer of the kernel that handles all input devices like keyboards or mice, calls this service function 
every time an input event is handled by the kernel. Such events are key presses, mouse movements, mouse 
button presses and similar events. To ensure that auto-repeat events are detected and properly discarded, 
the service function of add_input_randomness only stirs the random pool if the event value is 
different from the previous value5.

Every event has a value that is processed with add_input_randomness. For example, the key strokes 
from a keyboard are associated with a key code. When a mouse is moved, the dimensions such as left or 
right, forward or backward of the mouse is recorded.

The function add_input_randomness compares the event value of the current event with the one of 
the previous event. If both event values are identical (for example, a mouse is moved in one direction by two 
steps or the same key is pressed twice) the event is discarded. Otherwise, the event is added to the input 
pool. The following code shows the important steps:

void add_input_randomness(unsigned int type, unsigned int code,

                                 unsigned int value)

{               

        static unsigned char last_value;

        /* ignore autorepeat and the like */

        if (value == last_value)

                return;

...

5 Each event is assigned a value, such as the key code of the keyboard key that was pressed. Therefore, if 
repeatedly the same key is pressed, the service function would obtain the same key value and therefore 
discard this value.
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        last_value = value;

        add_timer_randomness(&input_timer_state,

                             (type << 4) ^ code ^ (code >> 4) ^ value);

The listed code does not contain any locks which protect the comparison with the previous value against 
simultaneous events on other CPUs. This is considered acceptable because in the worst-case one event that 
should be discarded is not. When events occur simultaneously it is not really possible to state in which order 
these events are to be processed. Therefore, a missing lock is uncritical.

The add_input_randomness function uses the following values as event value that will eventually be 
mixed into the input pool:

low 4 bits of the event type ⊕
event code ⊕

high 4 bits of the event code ⊕
event value

The interpretation of the event type, event code and event value varies greatly, depending on the type of 
HID. As the quantitative analysis will show, the HID event information contains very little entropy. 
Therefore, further explanation of the kind of data related to the event information is not considered 
relevant.

The time variances used to mix the random values into the input pool compare all HID which means that 
one global input_timer_state static variable is used as discussed in section 3.5.1. This means that one 
time state variable is maintained for all input device events.

The event value is statistically analyzed in section 6.1.3.

3.5.2.2 add_interrupt_randomness

As the name of the service function already suggests, interrupts are used as a source of entropy. This service 
function is placed inside the standard Linux interrupt handler and invoked every time an interrupt is 
received by the kernel. In addition, this function is called inside the VMBus interrupt handler, because when 
Linux executes as guest on Microsoft Hyper-V, all interrupts from the hypervisor are exclusively processed 
by the VMBus interrupt handler.

Before discussing the code and data structures involved in the gathering of interrupts to be mixed into the 
entropy pool, the concept of the handling of interrupts must be clarified. After the discussion of the concept, 
the code analysis is presented.

Considering figure 2, the interrupts are not directly fed into the input pool but rather into a “baby entropy 
pool” called fast_pool. This fast_pool is four C-language long words which makes it 128 bits in size on 32 bit 
system and 256 bits in size on 64 bit systems.

One instance of the fast_pool is created per CPU. Depending on which CPU an interrupt is received, the 
fast_pool of that CPU is used. The instruction pointer as well as the time stamp of each interrupt are mixed 
into the respective fast_pool. The entire content of that fast_pool is mixed into the input pool after the 
either of the following requirements is met:

• the count variable of the current fast_pool is at least 64, or

• the last mix-in of that fast_pool was more than a second ago, which is tracked with the last variable of the 
fast_pool data structure.

This implies that the function add_interrupt_randomness does not use the function 
add_timer_randomness to add time stamps as used by other entropy collection functions.
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The fast_pool is managed as a SipHash 1-0 / HalfSipHash 1-0 using an empty key, i.e. the internal state of the 
SipHash is initialized only with its constants as defined in the specification which mathematically implies 
that the 64 bit (32 bit architectures) or 128 bit (64 bit architectures) key is zero. The authors of SipHash 
describe in chapter 3 [SIPHASH] the strength of the algorithm and outline that SipHash has an appropriate 
strength for the 2-4 construction. Smaller constructions are not awarded a security strength.

The SipHash construction follows the specification in figure 2.1 [SIPHASH] to the extend that:

• Figure 2.1 m0 is the high-resolution time stamp.

• Figure 2.1 m1 is the instruction pointer.

• One SipRound is performed after the insertion step of m0.

• One SipRound is performed after the insertion of m0 and m1.

• The final insertion of m1 is not followed by any subsequent operation.

This implies that the Linux-RNG does not insert the 0xff byte into the SipHash state as mandated by 
[SIPHASH].

The first step is the fetching of the fast_pool for the CPU processing the interrupt. When looking at the 
file /proc/interrupts, the CPU executing the interrupt handler of a specific interrupt number is presented. In 
most cases, CPU0 is used to serve the interrupt which is the first CPU.

After obtaining the reference to the fast_pool, the interrupt event data is added to the content of the 
fast_pool as discussed above. The addition of the data to the fast_pool is followed by a stirring of the 
fast_pool using the fast_mix function.

If both conditions listed above about the number of interrupts and the expired time since last read-out are 
met, the current fast_pool content is injected into the input pool.

static void mix_interrupt_randomness(struct work_struct *work)

{

...

     fast_pool->count = 0;

     fast_pool->last = jiffies;

...

     mix_pool_bytes(pool, sizeof(pool));

     credit_init_bits(max(1u, (count & U16_MAX) / 64));

...

void add_interrupt_randomness(int irq)

{

...

     if (new_count < 64 && !time_is_before_jiffies(fast_pool->last + HZ))

          return;

...

     queue_work_on(raw_smp_processor_id(), system_highpri_wq, &fast_pool-
>mix);

The code snippet shows:
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1 If either condition, the number of interrupts and the expired time is reached, the data  from the fast pool 
is inserted into the input pool.

2 The time stamp of the last read-out of the fast_pool is set to the current time.

3 The content of the fast_pool is mixed into the input pool. This mixing operation is performed in a 
separate thread and therefore, performed asynchronously with the processing of interrupts. The Linux-
RNG contains a precaution that only one asynchronous invocation is active at one given time for the 
respective fast_pool.

4 Reset the number of received interrupts to zero for the initial condition check in step 1.

5 Increase the entropy estimator of the input pool by 1. Note, the calculation of (count & 
U16_MAX) / 64 relates to the add_timer_randomness handling: in case the 
add_timer_randomness was invoked during an interrupt, instead of adding the entropy directly to 
the entropy estimator, it is added to the fast_pool of the current CPU. In this case, the entropy estimate 
for the fast pool is larger than 1. The concept is that the entropy estimated by 
add_timer_randomness is inserted into the entropy pool via the fast_pool calculation. 
Mathematically this does not change the entropy estimation approach: data handled with the 
add_timer_randomness are estimated. Thus, this special case is not further considered during the 
assessment. Yet, this change now implies that there is no double-accounting of entropy for one event 
any more as it used to be the case in the Linux-RNG before.

With these steps, it is evident that

all four data words of the fast_pool and the fast_pool meta data

are used to update the input pool.

That means that between 1 and 64 interrupts are assumed to represent one bit of entropy. This implies that 
in the one extreme case the Linux-RNG awards each interrupt 1 bit of entropy in case the interrupt is not 
related to HID devices. For HID devices, in the extreme case, the Linux-RNG awards an interrupt up to 11 
bits of entropy. The other extreme is that the Linux-RNG awards 1/64th bit of entropy to each interrupt.

The event value is statistically analyzed in section 6.1.1.

3.5.2.3 add_disk_randomness

The last entropy gathering service function which adds data into the input pool and can increase its entropy 
estimator is add_disk_randomness, which is called by the scsi_lib subsystem, function 
scsi_end_request, which handles the accesses to ATA, SATA and SCSI mass storage devices attached 
to the system. 

When a disk event occurs, the device number forming the major and minor device number plus 0x100 is 
used to add entropy to the input pool:

void add_disk_randomness(struct gendisk *disk)

{

        if (!disk || !disk->random)

                return;

...

        add_timer_randomness(disk->random, 0x100 + disk_devt(disk));

}
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The function disk_devt(disk) obtains the member variable device->devt from the device data 
structure registered with the disk device structure which holds the device definition of the disk device.

In addition to the device number, the timer state variable disk->random is used to add entropy to the 
pool. The kernel maintains one timer state variable per disk device.

The timer state variable for a disk device is initialized with rand_initialize_disk that allocates 
zeroized memory and registers it with disk->random. This service function is called unconditionally 
when a new disk device is allocated by the block device layer.

struct gendisk *alloc_disk_node(int minors, int node_id)

{

...

                rand_initialize_disk(disk);

...

The function add_disk_randomness is only invoked if the following constraint is met for the given 
block device.

static bool scsi_end_request(struct request *req, blk_status_t error,

                unsigned int bytes)

{

...

        if (blk_queue_add_random(rq->q))

                add_disk_randomness(rq->rq_disk);

...

The code shows that only if the wait queue of the respective block device holds the flag 
QUEUE_FLAG_ADD_RANDOM (which is obtained with the blk_queue_add_random macro), the 
handler function of the random number generator is triggered. Per default, that flag is set for each block 
device:

#define QUEUE_FLAG_DEFAULT      ((1 << QUEUE_FLAG_IO_STAT) |            \

                                 (1 << QUEUE_FLAG_STACKABLE)    |       \

                                 (1 << QUEUE_FLAG_SAME_COMP)    |       \

                                 (1 << QUEUE_FLAG_ADD_RANDOM))

However, using the SysFS file of add_random found for each block device, that flag can be toggled. If the 
file contains a 1, the flag is set for the respective block device wait queue. This toggling can be used together 
with the contents of the SysFS file rotational, which identifies a block device based on rotating disks.

In addition, the kernel unsets the flag for disks that are known to not have rotational disks. Such unsetting 
of the flag is done for:

• RAM-backed block devices,

• SSDs,

• MMCs,

• Network block Devices,

• ZRAM block devices,
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• Multiple Devices (MD – software RAID) block devices,

• Memory Technology Device (MTD) block devices,

• Device Mapper block devices,

• S390 Support for Storage Class Memory (SCM) block devices,

• S390 XPRAM block devices, and

• the IBM PCIe SSD storage device: Flash Adapter 900GB Full Height.

The reason why disk devices are used as an entropy source is based on the nature of the disk devices and the 
resolution of the timer maintained by the kernel. The timer is very precise so that time variances in reading 
sectors from disks can be measured. Such time variances occur when the disk is spinning. For example, 
when sector 0x100 is to be read and the disk has to spin a quarter turn before reaching the start of this 
sector, the waiting time for the kernel is smaller than when the kernel would read that sector again and the 
disk would need to spin, say, three quarters. Moreover, the time to position the reading head also affects the 
timer.

However, a drawback must be considered when using disks that have no spinning disk. As the discussed 
time variances when reading only depend on moving parts, the entropy gathered by disks without spinning 
disks must be considered minimal.

The data obtained by the entropy collection value is the

block device number + 0x100, and

High-resolution time stamp.

The high-resolution time stamp is added to the input pool via the add_timer_randomness function. 
The time stamp event value is statistically analyzed in section 6.1.2.

3.5.2.4 add_device_randomness

Contrary to the aforementioned entropy collection functions, the goal of add_device_randomness is 
to feed the input pool during initialization time of device drivers. The function of 
add_device_randomness is intended to be invoked only once by device drivers with device-specific 
data.

The device-specific data is usually data that contains some uncertainty. This device-specific data together 
with the time stamp of the invocation of the function is mixed into the entropy pool.

The entropy estimator of the input pool is left unchanged which implies that the device-specific data is not 
assumed to contain entropy. Therefore, the device-specific data is only used to further stir the entropy pool.

The data to be mixed into the entropy pool is:

Device driver specific value, and

High-resolution time stamp.
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3.5.2.5 add_hwgenerator_randomness

The Linux kernel contains an additional entropy collection mechanism for in-kernel hardware-RNG device 
drivers. Before the advent of the add_hwgenerator_randomness function, the user space rngd 
daemon was required to transport random bits from /dev/hwrng – the interface to the hardware-RNG 
framework – to /dev/random. With the functionality described in the following, this detour via user space is 
no longer needed.

Contrary to the aforementioned interface functions which use the add_timer_randomness function to 
feed the entropy into the input pool6, the interface for the hardware-RNG driver framework mixes the 
obtained entropy directly into the input pool, by using the function mix_pool_bytes. Therefore, this 
interface establishes another seed source for the input pool in addition to those listed in figure 2.

Until the base ChaCha20 DRNG is fully seeded, the Linux-RNG allows all data received through this API call 
to be added to the entropy pool. After the fully seeded state is reached, the caller of the API is put to sleep 
and woken up once every 60 seconds.

The interface first mixes the random data into the input pool using the standard function 
mix_pool_bytes discussed in section 3.3.1.1. After stirring the pool, the entropy estimator for the input 
pool is updated with the entropy value that the caller of the interface specifies – i.e. the random number 
generator does not apply any heuristics to estimate the entropy from the obtained values using time 
variances. The interface is intended to bypass the entropy estimation heuristics implemented with the 
standard function of add_timer_randomness and therefore does not use that function.

The entropy collection function add_hwgenerator_randomness is exclusively used for mixing 
random data into the Linux-RNG that is derived from hardware random number generators. Per default, 
hardware random number generators are used as noise source for the Linux-RNG, if they are defined with a 
positive entropy ”quality” value. At the time of writing, the following hardware random number generator 
drivers define a quality value:

• The driver for the Cavium random number generator (drivers/char/hw_random/cavium-rng-vf.c) 
defines a quality of 1,000 which is translated by the framework into 1000/1024=0.977 bits of entropy per 
data bit.

• The ARM CryptoCell True Random Number Generator driver (drivers/char/hw_random/cctrng.c) uses 
the quality setting of 1024 which implies that this driver claims one bit of entropy per data bit.

• The Marvell CN10K Random Number Generator driver (drivers/char/hw_random/cn10k-rng.c) applies 
the quality value of 1000 implying 0.977 bits of entropy per data bit.

• The Freescale i.MX RNGC Random Number Generator implemented with 
drivers/char/hw_random/imx-rngc.c uses a quality of value of 19. This is translated into 19/1024=0.019 
bits of entropy per data bit.

• The Mediatek hardware random number generator driver of drivers/char/hw_random/mtk-rng.c uses a 
quality value of 900 which translates into 900/1024=0.879 bits of entropy per data bit.

• The Nuvoton NPCM random number generator driver of drivers/char/hw_random/npcm-rng.c uses a 
quality value of 1,000 and thus uses the same entropy rate as outlined for the Cavium driver.

• The OMAP and OMAP3 hardware random number generator implemented with 
drivers/char/hw_random/omap-rng.c and omap3-rom-rng.c use a quality value of 900. See the Mediatek 
driver for the entropy rate.

• The OP-TEE based Random Number Generator support driver (drivers/char/hw_random/optee-rng.c) 
applies the quality value of 1000 implying 0.977 bits of entropy per data bit.

6 See also figure 2 which shows how the seed sources are linked into the random number generator.
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• The IBM System Z / S390 TRNG available via CPACF extension MSA 7 is accessible via 
drivers/char/hw_random/s390-trng.c and uses a quality value of 1024 with an entropy rate of 
1024/1024=1 bit of entropy per data bit.

• The STMicorelectronics STM32 random number generator driver implemented in 
drivers/char/hw_random/stm32-rng.c uses a quality rate of 900. See the Mediatek driver for the entropy 
rate.

• The virtio-rng driver (drivers/char/hw_random/virtio-rng.c) defines a quality of 1,000 which implies that 
its data is treated with the same entropy content as described for the Cavium RNG.

• The Xiphera FPGA based True Random Number Generator support driver 
(drivers/char/hw_random/xiphera-trng.c) applies the quality value of 900 implying 0.879 bits of entropy 
per data bit.

Please note that the CPU hardware RNGs like the Intel RDRAND or RDSEED instructions are not processed 
with the add_hwgenerator_randomness function.

The developers of the respective device drivers are responsible to define an entropy content delivered by the 
respective hardware random number generator. The Linux-RNG does not implement any heuristics to 
estimate the entropy content of data obtained from these hardware random number generators. Further 
details about hardware  RNGs are provided in section 3.9.2.

The data to be mixed into the entropy pool of the Linux-RNG is the

random number produced by the hardware random number generator.

3.5.2.6 add_bootloader_randomness

The boot loader may hold data that is considered to contain entropy. This data can be inserted into the 
Linux-RNG using the add_bootloader_randomness. If the kernel is compiled with 
CONFIG_RANDOM_TRUST_BOOTLOADER or by specifying the kernel command line option 
trandom.trust_bootloader=1 this data inserted by the bootloader is credited full entropy.

The data to be mixed into the entropy pool of the Linux-RNG is the

random number provided by the hardware random number generator.

3.5.2.7 add_vmfork_randomness

When Linux executes within a virtual machine, there is a problem that most hypervisors can snapshot the 
state of the machine and later rewind the VM state to the saved state. This results in the machine running a 
second time with the exact same RNG state, which leads to serious security problems. Some hypervisors 
provide a new VM ID via ACPI when the VM is woken up or otherwise started. This value is mixed into the 
input pool.

When the Linux-RNG is fully seeded at the time a new VM ID is inserted, the base ChaCha20 DRNG is 
reseeded.

The data to be mixed into the entropy pool of the Linux-RNG is the

new virtual machine identifier.
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3.5.2.8 Scheduler-based Entropy Collection

During boot time when the base ChaCha20 DRNG is not fully seeded and user space requests random 
numbers via /dev/urandom are received or an in-kernel caller is made to wait for reaching the fully seeded 
level, the kernel tries to obtain entropy by measuring the uncertainty from the scheduling operation.

This measurement only works if a high-resolution time stamp is present. If the kernel detects that such 
high-resolution time stamp is not available, the scheduler-based entropy collection is not used.

The entropy collection is based on the following simple concept: A high-resolution time stamp with a size of 
64 bits is mixed into the entropy pool after a schedule operation is completed. The scheduling operation 
implies that the current execution thread is stopped and all other pending execution threads are processed 
until their time slice expires or they surrender the CPU. After all threads are processed, the thread of the 
Linux-RNG trying to generate entropy is started again by injecting a new high-resolution time stamp into 
the entropy pool. This sequence is repeated until the ChaCha20 DRNG is marked as fully seeded.

The functionality discussed so far only mixes data into the entropy pool. In addition to the mixing 
operation, the Linux-RNG arms a timer which expires after a time of one Jiffy – i.e. depending on the HZ 
kernel compilation option the timer expires after 1 ms or 4 ms. The timer is re-armed after expiry for 
another Jiffy period. During each expiry the entropy estimator of the Linux-RNG is increased by one bit. The 
timer is rearmed for as long as the high-resolution time stamp collection loop mentioned above executes.

Once the ChaCha20 DRNG is fully seeded, all operations of the scheduler-based entropy collection ceases 
and the entropy estimator is not modified any more by this entropy collector.

The data to be mixed into the entropy pool of the Linux-RNG is the

continuous stream of 64 bit high-resolution time stamps.

3.5.2.9 Latent Entropy GCC Plugin

Starting with kernel 4.9, a GNU Compiler Collection (GCC) plugin named “latent_entropy” is added to the 
kernel source code tree. As the name indicates, it is a plugin to the C compiler used to generate the binary 
code out of the kernel source code. This GCC plugin can be used to alter the binary code behavior compared 
to the “assumed” behavior visible with the C code. However, the GCC plugin code will not end up as part of 
the Linux kernel binary.

The latent entropy GCC plugin is designed to extract as much uncertainty from a running system at boot 
time as possible, hoping to capitalize on any possible variation in CPU operation (due to runtime data 
differences, hardware differences, SMP ordering, thermal timing variation, cache behavior, etc).

The concept of the GCC plugin is the permutation of a global variable based on any variation in code 
execution. During the boot process, the Linux kernel uses all available CPUs for the initialization of the 
kernel. Depending on the state of the CPU, sometimes a function on one CPU will complete earlier than a 
function on another CPU. In a subsequent boot process, this may be reversed. These variances are picked up 
by mixing a function-specific value into the global variable. The variable may therefore be different 
depending on the particular order of functions that were executed. The GCC plugin inserts a local variable 
in every marked function at compile time. The GCC plugin also adds logic so that the value of this variable is 
modified by randomly chosen operations (ADD, XOR and left-rotation) and random values (GCC generates 
separate static values for each location at compile time and also injects the stack pointer at runtime). The 
resulting value depends on the control flow path (e.g., loops and branches taken).

Before the modified function returns, the plugin mixes this local variable into the latent_entropy global 
variable. The value of this global variable is added to the  input pool during initialization of the kernel when 
the function do_one_initcall is invoked, and during the creation of a new process when invoking the 
_do_fork function. In both cases, the add_device_randomness Linux-RNG API function is 
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invoked with the current content of the latent_entropy global variable. As discussed in section 3.5.2.4, 
the injected data is considered to have no entropy.

Additionally, the plugin can pre-initialize arrays with build-time random contents, so that two different 
kernel builds running on identical hardware will not have the same starting values.

3.5.2.10 Mixing Entropy Source Data Into Entropy Pool

When entropy from the HID and block device entropy sources discussed above is mixed into the random 
number state, the function add_timer_randomness is used. This function always mixes the gathered 
entropy into the input pool. Hardware entropy is never mixed into the ChaCha20 DRNGs.

When mixing the hardware data into the input pool, the function add_timer_randomness adds not 
just the hardware-related data, but also timing data:

static void add_timer_randomness(struct timer_rand_state *state, unsigned 
int num,

 unsigned int hid)

{

unsigned long entropy = random_get_entropy(), now = jiffies, 
flags;

...

_mix_pool_bytes(&entropy, sizeof(entropy));

_mix_pool_bytes(&num, sizeof(num));

...

The above code snippet shows a data structure that is filled with:

• a high-resolution time stamp at the time of invocation of this code using the random_get_entropy 
function where the 32 low bits of the time stamp are used, and

• the value num which is the hardware-related data provided by the hardware entropy gathering functions 
like add_input_randomness.

The platform dependent function random_get_entropy is used to read the hardware timer. This 
function uses the following processor functions on the individual platforms to extract the timer value:

• The RDTSC (Read Time Stamp Counter) instruction on Intel x86 and AMD-Opteron

• The STCK (Store Clock) instruction on the zArchitecture

• The MFTB (Move From Time Base) instruction on Power

• On ARM 32-bit systems, the register value from the internal co-processor P15 is read using the opcode 0 
and CRm = c14. This operation is implemented in the function arch_counter_get_cntpct with 
the invocation of the following assembler code:
asm volatile("mrrc p15, 0, %Q0, %R0, c14" : "=r" (cval));

• On ARM 64-bit systems, the register CNTVCT_EL0 is read by the function 
arch_counter_get_cntvct which in turn uses the invocation 
arch_timer_reg_read_stable(cntvct_el0) that uses the following assembler helper code:
asm volatile("mrs %0, " __stringify(r) : "=r" (__val));

In all cases those instructions return a 64-bit value of the current hardware time counter irrespective of the 
word size of the underlying CPU.
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In the case of the Intel x86 and the Opteron the value of the clock is incremented every processor cycle, 
even when the processor is halted. This results in about 1 Billion increments per second on a 1 GHz 
processor. The value of the hardware time counter is reset to zero when the processor receives a reset signal.

In the case of IBM System Z there are 231  increments of the hardware time counter every 1.048576 
seconds. The value stored is the Time Of Day (TOD) clock, which is initialized when the kernel is started.

In the case of the Power architecture, the hardware time counter is incremented every 32 cycles of the 
processor. This results in 31,250,000 increments per second on a 1 GHz CPU. This hardware time counter is 
reset to zero when the CPU is reset.

Direct access to the hardware timer eliminates potential effects of a software maintained timer and the 
influence of any software running on the kernel on the value of the timer. It also provides the highest 
resolution possible for the given hardware platform.

In addition to the mixing of data into a given pool, add_timer_randomness also triggers the 
calculation of the entropy estimation for the processed data. This entropy estimation is discussed in section 
3.6.

Using the data structure sample, the following data is mixed into the entropy pool:

high-resolution time stamp || Jiffies || event value7

This value is subjected to quantitative analyses in section 6.2.

3.6 Entropy Estimation

In the preceding section it was shown how the entropy pool is updated. As noted there, the update of the 
entropy pool does not imply an update of the entropy that is estimated to exist in the given pool.

The entropy estimation is only carried out in the function credit_init_bits. The name of the 
function is indicative of the concept: it only credits entropy while the base ChaCha20 DRNG is not fully 
seeded yet. After reaching this state, the entropy estimator becomes irrelevant, it is not used any further to 
regulate the behavior of the Linux-RNG. The entropy estimator may be updated, e.g. by the IOCTL 
RNDADDENTROPY but this update is not going to trigger any operation once the base ChaCha20 DRNG is 
fully seeded.

If data is mixed into the random pools by the noise sources that credit entropy, the entropy estimator is 
increased by the heuristically applied entropy value. The following entropy sources provide entropy:

• Injection of data from the interrupt noise source: add_interrupt_randomness applies one bit of 
entropy per fast_pool to input pool transferal as specified in section 3.5.2.2.

• Injection of data with the add_hwgenerator_randomness function discussed in section 3.5.2.5.

• Generation of entropy with the scheduler-based entropy source described in section 3.5.2.8.

The Linux-RNG estimates the entropy of a hardware event and modifies the entropy estimator of the input 
pool accordingly. The ChaCha20 DRNG instances do not have any entropy estimator as they operate as a 
DRNG which is seeded once every 60 seconds. The base ChaCha20 DRNG is seeded with the available 
entropy from the input pool of up to 256 bits. Yet, even if no new entropy was added to the input pool, the 
Blake2s message digest as discussed in section 3.3.1.3 is calculated and injected into the ChaCha20 DRNG 
state.

The idea of the entropy estimation is that each hardware event is awarded a heuristically estimated entropy 
value which then increments the entropy estimator of the entropy pool. The process of estimating the 
entropy is performed for each received event.

7 The symbol “||” marks a concatenation of data.
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The entropy estimator is an integer value stored in the data structure of the entropy pool. The integer value 
holds the entropy in bits. The entropy estimator value init_bits is updated after the values are stirred 
into the input pool.

For the noise sources using the add_timer_randomness service function, the heuristic entropy estimate is 
obtained as follows. The Jiffies time of the hardware event is t n . The Jiffies time stamps referring to prior 

hardware events of the respective hardware component are denoted with t(n−1)  through t(n−3) . 
Section 3.5.1 illustrates which hardware components are tracked individually or jointly.

The following values are calculated in add_timer_randomness:

• delta = |(t n−t(n−1))|
• delta2 = |((t n−t (n−1))−(t(n−1)−t (n−2)))|
• delta3 = |(((t n−t(n−1))−(t (n−1 )−t(n−2)))−(( t(n−1 )−t(n−2))−( t(n−2)−t(n−3))))|
These values can be interpreted as the first, second and third discrete derivative of the event time for the 
hardware component.

The entropy of one event is now heuristically determined as follows:

1 Compute the minimum delta value min(delta, delta2, delta3).

2 Calculate the log2 of the minimum delta as an integer operation – i.e. value after the decimal point is 
discarded. The implementation of the logarithmic operation is achieved by dividing the minimum delta 
value by 2 and obtain the index of the highest bit of the value.

3 Use the minimum of the bit index and 11.

The method used is heuristic and assumes that the lower bits of the time of a hardware entropy event are 
unpredictable. Even two identical instruction sequences in a system with no network interrupt would result 
in very different interrupt timings. Yet, there is no rationale or test specification that conclusively 
demonstrates this assumption.

The use of Jiffies for the entropy calculation is historic: in the old days, the kernel only had the Jiffies time 
stamp available. With the advent of high-resolution timers, the majority of entropy is derived from this 
time stamp. Yet, the heuristic entropy estimation logic is not updated.

The heuristic entropy estimation value for the given hardware event is now used to increase the entropy 
estimator of the input pool by the given value.

Interrupts increase the entropy estimator by one (bit) every time a copy of the fast_pool is inserted into the 
entropy pool unless it is an interrupt that was also processed as a HID event. In this case, the interrupt is 
awarded with up to 11 bits of entropy as outlined for the add_timer_randomness entropy discussion.

The entropy estimator is not reduced when obtaining random bits from the entropy pool. Thus the entropy 
estimator is only used to determine when overall 256 bits of entropy have been received.

The credit_entropy_bits function also triggers the wakeup of read-like polling processes if the base 
ChaCha20 DRNG is considered to be fully seeded.

3.7 Generic Architecture and Linux-RNG

With chapter 2, a general architecture of NDRNGs is given. This section now maps the general architecture 
to the Linux-RNG to analyze whether all components that are expected to be present with a NDRNG are in 
fact present to consider the Linux-RNG as a stand-alone system.
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Figure 5 provides a mapping of the Linux-RNG with the theoretical discussion about NDRNG architecture. 
Using the mapping, the noise sources as well as the DRNG can be clearly identified and separated from the 
remainder of the Linux-RNG processing.
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Figure 5: Linux-RNG architecture compared with the generic architecture

With figure 5, three areas are illustrated which are separated by a dotted line:

• The upper left part contains the Linux-RNG illustration shown in the preceding section.

• The Linux-RNG observes and records events from various hardware devices. These hardware devices are 
illustrated in the lower left part of figure 5. Each of the gray boxes of the Linux-RNG containing 
“add_*_randomness” maps to a device type that is monitored by the Linux-RNG. The Linux-RNG 
boxes of add_device_randomness and add_hwgenerator_randomness are not further 
mapped and discussed, as they either do not deliver any entropy or access highly specialized hardware 
that is not commonly present in standard systems. To keep the entire discussion concise, these two boxes 
are therefore disregarded. In addition, the scheduler-based noise source is specified with the gray box in 
the lower left corner. Further details about these functions are given in section 3.5.

• The right part of figure 5 contains the architecture illustration from figure 1. As the discussion is about 
NDRNG, figure 5 does not further show the box about the cryptographic usage of data obtained from the 
noise source via the DRNG.

The right side of figure 5 shows the theoretical noise source concept from figure 1. Figure 5 uses different 
colors for the different components and uses equally colored arrows that point to the respective 
components of the Linux-RNG. To be precise:

• The unpredictable phenomenon identified with the red arrows in the Linux-RNG are the events 
triggered by the monitored hardware components. Section 3.5 provides details about these sources of 
unpredictability.
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• The recording of the unpredictable phenomenon, i.e. the events and their precise timing triggered by the 
aforementioned hardware components, is performed by the blue-marked components of the Linux-
RNG, namely the add_*_randomness functions as well as the scheduler-based noise source.

• The digitization of the data obtained with the recording components is implemented by injecting the 
recorded data into the input pool. Digitization is performed in a very simple fashion in the Linux-RNG as 
follows:

• For HID and block devices, the recorded event type and time stamp are stored in a data structure 
which then is simply treated as a byte-stream that is injected into the input pool. The interpretation 
of the recorded data as a byte stream is the digitization of that data.

• For interrupts, regular snapshots of the fast_pool are injected into the input pool. Similarly to the HID 
and block devices, the contents of the fast_pool is treated as a byte-stream when it is mixed into the 
input pool. Again, the interpretation of the fast_pool as a byte-stream implements the digitization 
aspect.

• For the scheduler-based noise source, the 64-bit time stamp value is mixed into the input pool. This 
value is treated as a 64-bit data stream.

• When considering the health test, the Linux-RNG implements one mechanism that serves as a common 
health test for all data that will be mixed into the input pool: the entropy estimation heuristic. The 
entropy estimation calculates the first, second and third derivative of the Jiffies time stamp of each event. 
Now, when this entropy estimation is zero, the base ChaCha20 DRNG may not reach its fully seeded state 
during boot time. In effect, this implies that the mixed in event data is treated as poor data where the 
noise source failed to deliver entropy. Yet, this health test effect is only used until the Linux-RNG reaches 
the fully seeded state.

• The function inserting data into the input pool using a Blake2s message digest can be considered a 
conditioning logic. An additional conditioning logic is evident with the fast_pool maintenance.

• The DRNG part is implemented by the output function to read the input pool: the output function 
calculates a Blake2s hash over the entire input pool which is used as the random number.

The description illustrates that the NDRNG solely is provided by the input pool and the functions feeding it 
with data. This allows the following interpretation of the Linux-RNG architecture:

The input pool together with its feeding functions is the NDRNG as already mentioned.

The ChaCha20 DRNG is a standalone, independent DRNG seeded from the input pool.

3.8 Use of the Linux-RNG

To ensure that the data read from the Linux-RNG contains sufficient entropy, a number of precautions must 
be taken. If one of these measures is not carried out, the quality of the data read from the Linux-RNG can be 
reduced significantly.

The quantitative analysis on the entropy of interrupts given in section 6.2.1 outlines that significant entropy 
is provided on systems with a high-resolution time stamp such as Intel x86 systems. On such systems, the 
following precautions may not need to be fulfilled in their strictest form.

During the shutdown of Linux, a number of bytes is suggested to be read from /dev/random and stored in 
non-volatile storage. The data is not treated to have entropy, but it helps to stir the input pool during boot 
time when the available entropy is still low. When storing the data, the storage must ensure that the data is 
inaccessible to untrusted entities. For example, the permissions of a file holding the data shall be 600 and the 
directory holding the file shall not be writable by untrusted users. Moreover, the number of bytes to be read 
is defined by the contents of /proc/sys/kernel/random/poolsize. The following code may be used to 
generate such a seed file:
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umask 077

rm -f /var/lib/random-seed

dd if=/dev/urandom \

   of=/var/lib/random-seed \

   bs=$(cat /proc/sys/kernel/random/poolsize) \

   count=1

Note, the location of the seed file is arbitrary, as long as the file is accessible during boot and it is protected 
from read/write access by any user other than root.

If the system does not have a defined shutdown cycle (for example it is an embedded device), the generation 
of the seed file should be performed during run time at either given intervals or once after boot. For 
example, the seed file can be generated every hour or one hour after boot.

During the startup of the user space the seed generated during the last run must be mixed into the state of 
the RNG by simply writing the seed into /dev/random or /dev/urandom. When writing into these files, the 
entropy pool is further mixed, ensuring that the state and therefore the entropy of the previous instance of 
the Linux-RNG is used to update the current state.

Considering regular Linux distributions, the initial installation writes a large amount of data to disk 
resulting in a large quantity of entropy. In addition, the installation process may require human interaction 
which leads to additional entropy being added via the HID of mouse or keyboard. That entropy should be 
saved similarly to saving the seed for a regular reboot discussed for step 1.

In the case of a full disk encryption configuration, the volume master key used for encrypting all data is 
generated very early in the initial installation cycle using a random number generator that is seeded by 
/dev/urandom. Considering the worst-case scenario of having an automated installation process with only 
limited administrator interaction, the entropy in the Linux kernel is very low. Therefore, the volume master 
key also will not have much entropy. In such a scenario, it is mandatory that additional entropy is gathered 
before the key is generated. For example, the installer may require a number of keyboard interactions before 
/dev/urandom is accessed and read from. As a conservative rule of thumb, one key stroke may be assumed 
to have one bit of entropy. On the other side, the developer may use the getrandom system call without 
any flags or /dev/random to ensure a fully seeded Linux-RNG.

In the case of LiveCDs, the boot sequence should be interrupted to require the user to provide entropy using 
the HIDs such as mouse or keyboard before any cryptographically strong key is to be generated. For 
example, when starting the OpenSSH daemon, the entropy inside the Linux kernel should be topped off. 
The reason for this requirement is that such LiveCDs do not implement the reseed maintenance. The 
subsequent mix-in into /dev/random during the next boot cycle therefore lacks significant entropy before 
disks are accessed or Human Interface Device devices are utilized. Again, a solution would be also to use the 
getrandom system call without any flags or /dev/random to ensure a fully seeded Linux-RNG.

3.9 Hardware-based Random Number Generators

3.9.1 CPU Hardware Random Number Generators

The driver for the Linux kernel random number generator uses the following hooks to request random 
numbers from a hardware noise source in the source code file include/linux/random.h:

#ifdef CONFIG_ARCH_RANDOM

# include <asm/archrandom.h>
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#else

static inline bool __must_check arch_get_random_long(unsigned long *v)

{

        return false;

}

static inline bool __must_check arch_get_random_int(unsigned int *v)

{

        return false;

}

static inline bool __must_check arch_get_random_seed_long(unsigned long 
*v)

{

        return false;

}

static inline bool __must_check arch_get_random_seed_int(unsigned int *v)

{

        return false;

}

#endif

/*

 * Called from the boot CPU during startup; not valid to call once

 * secondary CPUs are up and preemption is possible.

 */

#ifndef arch_get_random_seed_long_early

static inline bool __init arch_get_random_seed_long_early(unsigned long 
*v)

{

        WARN_ON(system_state != SYSTEM_BOOTING);

        return arch_get_random_seed_long(v);

}

#endif

#ifndef arch_get_random_long_early

static inline bool __init arch_get_random_long_early(unsigned long *v)

{

        WARN_ON(system_state != SYSTEM_BOOTING);

        return arch_get_random_long(v);
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}

#endif

The functions have the following meaning:

• arch_get_random_long: returns a 64-bit value (64-bit architectures) or a 32-bit value (32-bit 
architectures) from the DRNG output interface .

• arch_get_random_int: returns a 32-bit value from the DRNG output interface.

• arch_get_seed_long: returns a 64-bit value (64-bit architectures) or a 32-bit value (32-bit 
architectures) from the seeding output interface.

• arch_get_seed_int: returns a 32-bit value from the seeding output interface.

• The functions arch_get_random_seed_long_early and 
arch_get_random_seed_long_early are to be used for the first call to the CPU-based entropy 
source to allow potential initialization.

The mentioned functions are set to return false which implies that the Linux-RNG would perform its 
operation completely without the help of a hardware RNG. However, if the kernel is compiled with 
hardware support, the file asm/archrandom.h contains replacements for the given functions.

The following sections discuss the currently implemented hardware RNG support.

3.9.1.1 Intel RDRAND and RDSEED Instructions

Starting with the IvyBridge x86_64 processor, Intel implements the RDRAND instruction. That instruction 
provides access to a hardware noise source that is processed by a deterministic SP800-90A compliant DRBG 
based on AES in CTR mode8.

Starting with the Broadwell Intel x86_64 CPU release, the RDSEED instruction is offered in addition. The 
RDSEED instruction allows access to the output of the AES CBC-MAC conditioned noise data which is also 
used to seed the aforementioned CTR DRBG.

The Linux kernel implements the support for the RDRAND and RDSEED instructions by implementing the 
above mentioned architecture-specific callback functions to return random numbers with a different size.

The implementation is based on assembler code provided in the file arch/x86/include/asm/archrandom.h. 
The assembler code makes sure that the instruction is only invoked if the CPU implements the requested 
RDRAND or RDSEED instruction by checking the CPUID feature of X86_FEATURE_RDRAND or 
X86_FEATURE_RDSEED, respectively.

3.9.2 Hardware Random Number Generator Framework

The Linux kernel implements a framework for hardware RNGs which are provided with dedicated hardware 
components such as PCI cards or auxiliary hardware components which are not commonly present for the 
majority of users. This framework exports a character device file to user space, /dev/hwrng, that allows user 
space to read data from a device driver that registered with the framework and found the associated 
hardware. The hardware random number generator framework is unrelated to the Linux-RNG and to the 
CPU hardware RNG support mentioned above.

8 For more details, see http://software.intel.com/en-us/articles/intel-digital-random-number-generator-drng-
software-implementation-guide/.
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The Linux-RNG offers the function add_hwgenerator_randomness to the hardware RNG framework. 
Using this interface function, the hardware random number generator framework can inject entropy into 
the input pool directly without requiring user space support.

The following subsection illustrates the different use cases of the hardware random number generator 
support using the example of the IBM POWER system.

3.9.2.1 IBM POWER Random Number Generator

The IBM POWER CPU implements a hardware noise source based on ring oscillators. This noise source is 
only accessible from software executing in supervisor state, i.e. a driver in an operating system kernel.

The IBM POWER system is offered with two hypervisors that are mutually exclusive: the IBM proprietary 
PowerVM, and PowerKVM based on Linux with KVM support. When using hypervisors, the noise source 
can only be accessed by the hypervisor. Guest operating systems must interact with the virtual machine 
monitor to access the data from the hypervisor.

Figure 6 illustrates the data flow of the random numbers from the noise source to the Linux random 
number generator when Linux executes as a guest operating system in a PowerVM environment:

Linux Kernel

power-rng

LRNG

Hypervisor

Driver

POWER HW RNG

TOE (PowerVM Guest)
PowerVM Host

POWER Hardware

Hypercall

/dev/hwrng

pseries-rng

rngd

Figure 6: Flow of random 
numbers in a PowerVM 
environment

The figure for PowerVM shows the following information flow when new random numbers are requested in 
the Linux guest operating system:

1 New data is obtained from the noise source by a PowerVM proprietary device driver.

2 PowerVM makes this data available via a hypercall. That hypercall is used by the Linux guest kernel 
driver pseries-rng.

3 The driver pseries-rng is registered with the Linux kernel hardware RNG framework that makes the data 
available to the Linux guest operating system user space via the /dev/hwrng device file.

4 The rngd daemon may pull the data from /dev/hwrng.

5 Using the add_hwgenerator_randomness interface, the hardware random number generator 
framework injects the data into the Linux-RNG of the Linux guest operating system.

Figure 7 illustrates the data flow of the random numbers from the noise source to the Linux-RNG when 
Linux executes as a guest operating system in a PowerKVM environment.
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The figure for PowerKVM shows the following information flow when new random numbers are requested 
in the Linux guest operating system:

1 New data is obtained from the noise source by the Linux power-rng device driver in the Linux host. This 
device driver is connected with the Linux kernel hardware RNG framework that makes the data available 
to the Linux host operating system user space via the /dev/hwrng device file.

2 The rngd daemon in the PowerKVM host may pull the data from /dev/hwrng.

3 Using the add_hwgenerator_randomness interface, the hardware random number generator 
framework injects the data into the Linux-RNG on the Linux host operating system.

4 The QEMU virtual motherboard application in the PowerKVM host provides a para-virtualized device 
which acts as a first-in, first-out (FIFO) between the guest OS and the PowerKVM host /dev/random9.

5 The QEMU para-virtualized device is accessed by the Linux guest operating system device driver virtio-
rng.

6 The driver virtio-rng is registered with the Linux kernel hardware random number generator framework 
that makes the data available to the Linux guest operating system user space via the /dev/hwrng device 
file. In addition, that particular device driver uses the hardware random number generator framework to 
establish a dedicated link to the Linux random number generator of the Linux guest operating system 
and can provide data to the input pool. The framework establishes a kernel thread named “hwrng” that 
pulls 32 bytes from the virtio-rng device (and thus from the PowerKVM host /dev/random device) and 
adds it to the Linux guest operating system input pool as discussed in section 3.5.2.5. When the thread is 
spawned at the time the virtio-rng driver is loaded and initialized, the first 32 bytes are provided to the 
input pool.

3.10 Support Functions for Other Kernel Parts

The source code file drivers/char/random.c implementing the Linux-RNG offers service functions to other 
kernel parts that are not related to the Linux-RNG. All interface functions eventually will invoke the 
standard get_random_bytes function and thus use the Linux-RNG as analyzed in the remainder of this 
document.

9 The administrator of the host system can configure QEMU to access also /dev/urandom.
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In addition, the Linux-RNG provides the function get_random_bytes_arch which allows callers to 
obtain random numbers from the CPU hardware RNG. If the current CPU does not provide such support, 
the service function fails and returns that failure to the caller.

3.11 Time Line of Entropy Requirements

To give the reader a general impression when random numbers are required in a Linux system, this section 
describes the boot process of a common Linux environment. The reader should consider this section as 
guidance only, since the precise random number requirements highly depend on the structure of the Linux 
system, including whether it uses an initramfs, is a Live-CD, how user space is booted, etc.

This section uses the common Linux distributions such as Fedora, openSUSE’s Leap or Debian as examples 
and assumes the use of systemd as user space initialization framework and the use of an initramfs.

The description also provides an indication of event times since boot when certain events happen. These 
event times naturally may vary widely depending on the CPU speed, used hardware components that need 
initialization and similar factors. Therefore, these event times should be used by the reader only as an 
indication where the relative sequence of events in a large number of cases remains the same.

3.11.1 Installation Time

The installation of a Linux system is commonly started by booting a Live-CD or a USB thumb-drive with an 
ISO image. The booted Linux environment is solely started from the boot media, such as a DVD or USB 
drive.

The installation environment is not considered a general-purpose computing environment and thus is not 
intended to be used to process user data with cryptographically secure mechanisms. In special 
circumstances, such “installation-like” Linux environments are used for active use including cryptographic 
purposes, like Live-CDs. Yet, such use cases are rare and require additional consideration regarding entropy.

So, why is the installation time still of interest? The answer lies in more and more common full-disk 
encryption installations. As of now, Linux with its dm-crypt full disk encryption solution does not support 
encrypting the disk at runtime. Therefore, when the full disk encryption support is enabled, it is mandatory 
that the partitions subjected to encryption are prepared accordingly before any data is copied onto them. 
For the root partition, such a setup can consequently only be performed before it is created and data is 
copied to it.

The installation tools commonly ask all installation-relevant questions before any operation including disk 
accesses is performed. This also covers the request of the user's password during the installation process that 
will guard the master volume key. One of the first steps during the installation will be the preparation of the 
hard disk as a dm-crypt container. This preparation includes the generation of the master volume key that is 
a random number commonly obtained from libgcrypt's DRNG that is seeded from /dev/urandom. That 
implies that this master volume key, which remains unchanged for the lifetime of the file system, is created 
before hardly any disk operations have been performed. In some cases, the installation tool is even ASCII-
based or even completely unattented which requires the user to press a few keys only without the use of a 
mouse. Thus, the two noise sources for block devices and HID hardly collect entropy.

After the installation is completed, some installers already create the seed file which is injected into the 
Linux-RNG during the first boot from the newly installed hard disk. Since by the end of the installation time 
many disk accesses have been performed without much random data having been extracted from the 
Linux-RNG, its entropy pool can be considered to be full of entropy and thus the seed data to be entropic, 
too.
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3.11.2 First Reboot After Installation

After the installation of the system, the first following reboot is important regarding its cryptographic 
security. During that first reboot, the SSH host keys are created at the time the SSH daemon is started. The 
start of the SSH daemon commonly happens during the start phase of the network daemons commonly 
between 2 and 10 seconds after boot, depending on the CPU speed and other properties of the system.

Other cryptographic keys may be automatically generated almost at the same time, such as keys and 
certificates for TLS servers and others.

3.11.3 Regular Usage

The following description outlines the sequence of events with respect to the Linux-RNG and the use of 
random numbers that may be commonly observed during regular boot sequences:

1 The system is powered on, and the kernel is loaded into memory and boots.

2 After ending the initramfs phase which mounted the root file system, the user space initialization starts. 
During the early phase of this initialization, the seed file is written into /dev/random.

3 Cryptographic daemons such as the SSH server daemon, web servers with TLS support, and the IKE 
daemon start. During their startup, the used cryptographic libraries seed their DRNG from 
/dev/urandom. Those daemons are accessible from remote entities and are intended to grant secure 
cryptographic operation. Note, that those user space DRNGs either do not reseed automatically at all (like 
it is the case with OpenSSL's SSLeay DRNG before OpenSSL 1.1.1) or only after a large reseed interval (in 
cases like SP800-90A DRBGs, or libgcrypt's CSPRNG). This means that by the time the daemons start and 
initialize their DRNG, sufficient entropy must be present in the Linux-RNG as these daemons must be 
considered to be cryptographically insecure otherwise.

4 In case the scheduler-based entropy source is unavailable, far later than the completion of the user space 
initialization, the input pool is filled with 256 bits of entropy for the first time. To give readers an 
impression about the delay in a worst-case, the author installed a system in a virtual machine with 
hardly any devices. Although the ChaCha20 DRNG initial seeding step was reached after about 0.9 to 1 
seconds after boot, the fully seeded stage that marks the receipt of 256 bits of entropy in the input pool 
was reached up to 90 seconds after boot. The boot process of user space with an SSH daemon was fully 
completed after 2.5 seconds. This implied that the systemd initialization function would time-out and 
the SSH-daemon would never be started automatically.

3.12 Security Domain Protecting the Linux-RNG

Based on the architecture description of the preceding sections it is evident that the Linux-RNG keeps a 
state which collects and maintains the entropy from the noise sources. Furthermore, the Linux-RNG reads 
data from the noise sources which contain the raw entropy. All entropy will be immediately lost if either the 
state of the Linux-RNG or the behavior of the noise sources can be observed by an untrusted entity.

Moreover, the processing logic is vital to ensure that the entropy is maintained and proper random numbers 
are generated. Thus, besides maintaining the internal state of the RNG, the processing logic must be 
protected against modification by an untrusted entity.

The protection of the Linux-RNG state, the noise sources and the processing logic of the Linux-RNG can 
only be achieved by requiring the hosting execution platform to provide a security domain for the Linux-
RNG. Such security domain is available with the Linux kernel which hosts the Linux-RNG. The protection 
requirements and assurance level of the Linux-RNG are at least as high as those of any other kernel 
functionality and data.
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Any violation of the security domain of the Linux kernel by an untrusted entity, including either read 
and/or write access to the Linux kernel data or processing logic, implies that the entropy of the random 
numbers generated by the Linux-RNG must be considered compromised. It would mean that their 
cryptographic strength is diminished.

Such violations of the security domain include:

• Execution of untrusted code as part of the Linux kernel security domain: This would be the case if that 
untrusted code is loaded into the kernel and executed with kernel privileges. This can either happen 
because of Linux kernel bugs allowing the insertion of untrusted code via broken kernel interfaces, or if a 
privileged user space application is compromised to permit loading untrusted code. The execution of 
untrusted code allows read and write access to the Linux-RNG, its state and its noise sources.

• Read access to the state of the Linux kernel security domain: If an untrusted entity gains read access to 
the state data maintained within the Linux kernel the security domain is violated. Such read access may 
either be direct by exploiting bugs in the Linux kernel allowing such read operations or by using side 
effects of either the Linux kernel behavior or the underlying environment. As an example of undesired 
side channels are all attacks abusing cache behavior (L1, L2, L3 caches, TLB), branch-prediction and 
similar mechanisms. In addition, read access to the Linux kernel security domain may be possible by a 
virtual machine monitor if the Linux kernel executes as a guest or by more privileged software 
components. The latter includes the BIOS, the System Management Mode (SMM) or the Management 
Element (ME) found in contemporary x86 hardware.

• Write access to the state or the processing logic of the Linux kernel security domain may allow an 
untrusted entity to alter either the behavior of the Linux-RNG or its state. Such write accesses may also 
be either using direct means by exploiting Linux kernel bugs or by indirect means of side channels.

The software of the Linux kernel cannot defend against attackers with physical access to the execution 
environment. Thus, the proper operation of the Linux-RNG depends on the security of the Linux kernel and 
its execution environment where the administrator must ensure the following by virtue of operational 
procedures:

• the physical security of the execution environment,

• a proper patch management to ensure that the Linux kernel receives timely security updates, and

• by using a trustworthy execution environment including trustworthy hardware for the Linux-RNG.
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4 Conducted Analyses of the Linux-RNG
In the past, the Linux-RNG received attention by different reviewers: An analysis of the Linux-RNG 
implemented in the Linux kernel version 2.6.10 has been published in 2006 by Gutterman et al. In [GPR06]. 
A study by Lacharme et al. from the year 2012 [LRSV12] has been carried out for kernel version 2.6.30.7 and 
some newer versions show that some attacks described in [GPR06] are no longer possible with newer kernel 
versions.

However, due to the complete re-architecture of the Linux-RNG with kernel version 5.18, none of the 
analyses are applicable any more.

4.1 Considerations by Müller

Over the last years, one of the author of this study has developed a drop-in replacement of the Linux-RNG 
available at LRNG web site10 implemented in the kernel as well as a full user space implementation provided 
at the ESDM web site11. Both implementations are equipped with a complete design description 
[LRNGREPLACEMENT] (the design of both with respect to the entropy sources and DRNG management are 
identical, thus only the LRNG kernel implementation is referenced henceforth), qualitative and quantitative 
entropy assessment as well as compliance assessment with [SP800-90B] and [AIS2031]. 

As part of the documentation and based on the knowledge gained during the implementation of that 
replacement implementation, the following considerations about the Linux-RNG are raised.

In addition, the LRNG design description (section 2.2.5) hints to another issue that is outlined with the 
following description: Depending on the assumed entropy in the data provided by one block device event or 
human interface device event, zero to 11 bits12 of entropy may be stirred into the entropy pool per injection. 
One injection of a fast_pool into the input pool is credited with one bit of entropy. At the same time the 
entropy pool is seeded with the input containing entropy, callers may read random data from it. For an 
insufficiently seeded random number generator, this leads to a loss in entropy that is visualized with the 
following worst-case analogy: when an RNG receives one bit of entropy which is followed by a generation 
of one or more random numbers, the caller is required to guess one bit to break the state of the RNG. When 
one new bit of entropy is received after the attacker's gathering of random data, the new state of the RNG 
will again only have one bit of entropy and not two bits (the addition of the first and second seed). Hence, in 
a pathological case, the entropy pool may receive 128 bits of entropy in 128 separate seeding steps where an 
attacker can request random data from the entropy pool between each seeding operation. An attacker has to 
guess 21⋅128  different states and not 2128  – i.e. the amount of guessing to deduce the RNG state is 
reduced to a manageable level. However, as the issue implies that (a) an event has only as much entropy as 
specified by the heuristically awarded entropy and (b) an attacker knows the internal state of the Linux-RNG 
at some point – which both are unlikely to be the case – this illustrated issue is not considered to lead to an 
attack. This issue is mitigated to some extent by blocking /dev/random or getrandom until the base 
ChaCha20 DRNG is fully seeded. Yet, the same base ChaCha20 DRNG is already available via /dev/urandom. 
The issue is aggravated by the fact that many reseeds take place during early boot as outlined in section 
3.3.2.1. Yet, the increasing delay in reseed events mitigates the issue again. Even during runtime this issue is 
present because at any stage, the input pool generates 256 bits of data when the ChaCha20 DRNG is 
supposed to be seeded once every 60 seconds. Due to all of these mitigating and aggravating factors, a 
conclusive determination whether the issue is a real-life problem cannot be answered in this document. 
However, the entire discussion around this matter could easily be silenced if the input pool generates only 
data when, say, at least 128 bits of entropy have been received since the last generation attempt.

10 https://www.chronox.de/lrng.html
11 https://www.chronox.de/esdm.html
12 The explanation for the limit of 11 bits is given in section 3.6.
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The following issue was identified during the development of the LRNG. Though it has been addressed in 
the LRNG implementation, it is still present in the Linux-RNG. When injecting new seed data from user 
space by either the IOCTL or by writing into either /dev/random or /dev/urandom, the seed data is added to 
the input pool. It remains unused there until the base ChaCha20 DRNG decides it is time to reseed. This 
means that new seed data provided by user space will not be put to use in the ChaCha20 DRNG accessible 
via the Linux-RNG interfaces for up to 60 seconds. This issue, however, can be alleviated when user space 
actively calls the IOCTL RNDRESEEDCRNG which requires root-privileges though.

Considering the nature of a random number generator as the foundation of cryptography (with the 
exception of hashes), any issue in the random number generator can lead to a break of the entire 
cryptography resting on it. Thus, particular care must be taken that the random number generator operates 
as expected. It is commonly the case that random number generators implement a self-test during boot 
time or even during runtime. This self-test should verify that the deterministic processing steps still work as 
intended. With the more complex post-processing operation implemented in the Linux-RNG, such self-
tests are hard to add. The following self-tests could be considered:

• The operation of the ChaCha20 DRNG could be verified with a test vector. The ChaCha20 DRNG 
implemented in the Linux-RNG, however has internal interface functions which do not lend itself for an 
easy add-on of a self-test.

• The Blake2s hash operation providing the state transition function as well as the output function of the 
input pool is another deterministic operation which is vital to the entropy maintenance as it is the core 
function that compresses the input data. A self-test would be straight forward to implement with the 
existing Linux-RNG code base.

• The SipHash logic handling the fast_pool is yet another vital post-processing function that is 
deterministic. It should be subject to a self test.

With the LRNG, all of these self-tests are implemented and automatically invoked during boot time. In 
addition, these self-tests can be triggered at runtime at any time. This implementation could be mined to 
add such self-tests to the Linux-RNG.

The entropy estimation of the Linux-RNG is based on calculating the first, second and third discrete 
derivative of the measured time stamps delivered by the Jiffies timer. The Jiffies timer is a coarse timer 
which ticks, depending on the kernel compilation configuration, at a rate of 1ms or 4ms. This timer value is 
even not being used as raw entropy source. Yet, the Jiffies timer data is used to calculate the heuristic 
entropy value awarded to an entropy event for human interface devices or block devices. This statement 
already allows the conclusion that the heuristic entropy estimation based on the Jiffies timer has little 
relationship with the actual entropy delivered with the recorded events. The calculations provided in 
chapter 6 outlines that the Linux-RNG significantly underestimates entropy. However, as the heuristic 
entropy estimation has hardly any relationship with the actual entropy, it is considered to be coincidental 
that the Linux-RNG underestimates entropy. As the entropy sources whose heuristic entropy value is 
calculated based on Jiffies are all a “derivative” of interrupts, the solution to this issue is to simply discard 
these events as noise and re-architect the interrupt noise source such that its entropy estimation has more 
resemblance with reality. Such approach is taken with the handling of the event data in the LRNG – see the 
processing of the raw noise data outlined in [LRNGREPLACEMENT] figure 2.1.

The extraction function extract_entropy is unnecessarily complex because it implements a pseudo-
random function (PRF) to extract arbitrary long bit sequences from the input pool. Conceptually it works 
like HKDF with an expand and extract function. Yet, all callers of the function only request 32 bytes, exactly 
one Blake2s block. Thus, the extract operation will always be invoked only once. Thus the PRF behavior of 
extracting arbitrary bit sequences is never used.

add_timer_randomness uses the function _credit_init_bits which performs entropy 
accounting even after the entropy pool reached its fully seeded state. The entropy accounting is not used 
after reaching the fully seeded state which implies that this call performs operations that are not needed.
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The use of SipHash/HalfSipHash 1-0 for the fast_pool has an unspecified security strength. Yet, it is 
estimated that its security behavior is better compared to the old fast_pool. The author of this study 
acknowledges that neither the input nor the output of the SipHash function is visible to attackers. Thus, the 
security strength is irrelevant to the discussion. However, it is most important that the SipHash operation 
does not destroy entropy in its compression of the input data. Yet, it is unclear which impact SipHash has on 
entropy of the input data. Considering that at least sixty four 64-bit time stamps whose entropy is in the 
least-significant bits are compressed and that the resulting data is awarded one bit of entropy, it is assumed 
that SipHash does not destroy entropy to the extent that eventually less than one bit of entropy of the input 
data remains. Nonetheless, this is an assumption only, that is not verified by this analysis. Furthermore, 
crediting only one bit of entropy for at least 64 time stamps which each has more than one bit of entropy 
indicates the very conservative approach of the Linux-RNG.

The changes to the handling the entropy estimator implies that the entire concept of waking up user-space 
entropy providers when entropy runs low is now completely obsolete. Except during early boot time, it 
makes no sense for user space entropy providers to select(2) on /dev/random and expect to be woken up 
when a reseed is needed. All that such entropy-providers can now do is to periodically wake up and insert 
data without relying on the kernel to inform them. This is a conceptual departure that may not be known to 
all such entropy daemons and thus those entropy daemons may now behave differently than intended by 
their developers.

The Linux-RNG does not have any effective entropy source health test any further. Before the entropy 
heuristic for the HID and block devices could be considered as a form of health test because the input pool 
did not provide any data if the input data was identified to be poor and thus not having any entropy. With 
the current implementation, there is no effective detection of a temporary or permanent break in the noise 
source any more.

Considering the mentioned concerns it is not clear why the re-implementation of the Linux-RNG partially 
appears in stable kernels like 5.18.1 or is backported to stable kernels of 5.15.44 and other long-term-support 
(LTS) kernels. None of the changes address a security or safety critical aspect of the Linux kernel. This marks 
a significant departure of how stable kernels are defined: they only receive patches that address weaknesses 
or bugs.
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5 Coverage of BSI Requirements NTG.1 and DRG.3
The functionality classes of NTG.1 and DRG.3 are defined in [AIS2031], sections 4.10 and 4.8, respectively. 
The current chapter lists all requirements of the respective functionality classes and compares them with 
the implementations found in the Linux-RNG.

The analysis demonstrates the following: The implementation of the ChaCha20 DRNG feeding 
/dev/random, /dev/urandom, the getrandom system call, and the in-kernel get_random_bytes API 
complies with the requirements of DRG.3 if the constraints outlined in section 5.2.1 apply. When a suitable 
replacement for the seed source discussed in section 5.2.1 is found, this conclusion applies to other 
hardware architectures as DRG.3 defines procedural requirements only.

5.1 NTG.1 Compliance

Starting with kernel version 5.18, the input pool of the Linux RNG does not comply with NTG.1 any more 
because the input pool does not apply any limitation when insufficient entropy is present. This verdict 
applies also to kernel versions to which these changes released with 5.18 are backported to. For example, 
5.15.44 and later also lost its NTG.1 compliance.

5.2 ChaCha20 DRNG: DRG.3

The ChaCha20 DRNG backing /dev/random, /dev/urandom, the get_random_bytes API and the 
getrandom system call is analyzed to whether they comply with DRG.3 in this section.

This section analyzes the primary and the secondary ChaCha20 DRNGs separately as both have different 
characteristics.

Starting with 5.18, the Linux RNG does not comply with DRG.3 any more except for an edge use case 
because the secondary ChaCha20 DRNGs seed from a primary ChaCha20 DRNG that is not guaranteed to 
receive fresh entropy when such reseed operations are performed. This means a chaining of DRNG 
instances is applied without ensuring proper reseeding of the initial DRNG.

5.2.1 DRG.3.1

The requirement of DRG.3.1 is defined as:

“If initialized with a random seed [selection: using a PTRNG of class PTG.2 as random source, using a PTRNG 
of class PTG.3 as random source, using an NPTRNG of class NTG.1 [assignment: other requirements for 
seeding]], the internal state of the RNG shall [selection: have [assignment: amount of entropy], have 
[assignment: work factor], require [assignment: guess work]].”

The seeding of the ChaCha20 DRNG allows the use of CPU-based noise sources which contribute entropy. 
These noise source, however, cannot be analyzed or tested and thus must be assumed to have zero bits of 
entropy for this discussion. Therefore, to ensure that no entropy is assigned to these noise sources, the 
following kernel command line options must be set:

•  random.trust_cpu=0 or the kernel compile-time option of CONFIG_RANDOM_TRUST_CPU must 
be disabled, and

• random.bootloader=0 or the kernel compile-time option of 
CONFIG_RANDOM_TRUST_BOOTLOADER must be disabled.
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To seed the base ChaCha20 DRNG from the input pool after reaching the fully seeded state (which marks the 
unblocking of the blocking interfaces), 256 bits of entropy are collected by the latter and then used to seed 
the ChaCha20 DRNG.  Using the SP800-90B min-entropy estimation measured for the interrupt events in 
sections 6.3.1 and 6.3.3, each interrupt event delivers more than 2 bits of entropy (using the lowest SP800-
90B value from the referred sections). This implies that when receiving 256 interrupts, the Linux-RNG has 
received at least 512 bits of entropy. Thus for the base ChaCha20 DRNG, the following selection of DRG.3.1 
above can be applied: “the internal state of the RNG shall have almost 256 bits of entropy”. 

The in-kernel API call of register_random_ready_notifier allows registering callback functions 
by kernel subsystems. When using this API, the registered kernel subsystem’s callback function is invoked 
after the ChaCha20 DRNG is initially seeded with 256 bits of entropy. Thus, when using the API call to 
register a callback, the aforementioned statements about the amount of entropy present in the ChaCha20 
DRNG equally apply after the callback functions have been triggered.

Similarly, the use of the in-kernel service function of wait_for_random_bytes ensures the caller is 
suspended until the ChaCha20 DRNG is fully seeded. It therefore is identical to the 
register_random_ready_notifier function behavior with the exception that it provides a 
synchronous waiting.

Contrary, due to the lack of initial seeding enforcement, the following methods of using the ChaCha20 
DRNG are not DRG.3.1 compliant:

• using /dev/urandom,

• using get_random_bytes either before the callback functions registered with the API of 
register_random_ready_notifier has been triggered or using get_random_bytes without 
registering a callback at all, and

• using get_random_bytes before the service function of wait_for_random_bytes returns.

In case only one CPU is present in the system the base ChaCha20 only provides data to one secondary 
ChaCha20. The primary ChaCha20 is not otherwise usable. In this case, the data extracted from the 
secondary ChaCha20 DRNG via the output interfaces like /dev/random or the getrandom system call are 
considered data from a DRG.3.

In case more than one CPU is present in the system (which common on contemporary systems), the base 
ChaCha20 DRNG reseeds multiple secondary ChaCha20 instances – one per CPU – without guaranteeing a 
fresh reseed from the input pool. The output from the multiple secondary ChaCha20 DRNGs is not 
considered to be DRG.3 compliant. As the base ChaCha20 DRNG is not accessible by any caller, the 
conclusion is that the Linux-RNG executing on a multi-CPU system is not DRG.3 compliant.

Thus the final conclusion is that on common contemporary systems, the Linux-RNG is not meeting DRG.3.1 
requirements as the secondary ChaCha20 DRNG is not guaranteed to be initially seeded with 256 bits of 
entropy.

Considering that the secondary ChaCha20 DRNG is always seeded from a fully seeded primary DRNG, this 
non-conformity, however, is not considered to be a cryptographic weakness.

5.2.2 DRG.3.2

The requirement of DRG.3.2 is defined as:

“The RNG provides forward secrecy.”

The forward secrecy is guaranteed by the ChaCha20 DRNG as follows: The ChaCha20 DRNG maintains an 
internal state which holds a key that is unknown to the caller. Furthermore, the ChaCha20 DRNG 
increments the counter by one after each generated block. Assuming that the ChaCha20 block function is 
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irreversible for an observer that does not have access to the ChaCha20 state with its key, a caller cannot 
deduce subsequent random numbers from his obtained random number.

Furthermore, ChaCha20 is resistant against determining the used key by assessing the already generated 
random numbers.

These properties therefore guarantee forward secrecy.

Therefore, the ChaCha20 DRNG complies with the requirements of DRG.3.2.

5.2.3 DRG.3.3

The requirement of DRG.3.3 is defined as:

“The RNG provides backward secrecy even if the current internal state is known.”

The first block generated by an instantiated ChaCha20 block operation is used as a new key for the next 
ChaCha20 block operation instance. The currently used key is destroyed which means that the current key 
is not present any more except in the instantiated ChaCha20 block operation which is also securely erased 
from memory once the request for random numbers is satified. Assuming that the ChaCha20 block function 
is irreversible without the key, an attacker cannot deduce the previous state used to generate previous 
random numbers via the ChaCha20 block operation even when the current ChaCha20 state is known to the 
attacker.

Therefore, the ChaCha20 DRNG complies with the requirements of DRG.3.3.

5.2.4 DRG.3.4

The requirement of DRG.3.4 is defined as:

“The RNG, initialized with a random seed [assignment: requirements for seeding], generates output for 
which [assignment: number of strings] strings of bit length 128 are mutually different with probability 
[assignment: probability].”

The ChaCha20 DRNG state has a size of 256 bits equal to the key size of ChaCha20. In a worst-case scenario 
when the state has just been fully seeded with fresh entropy it can generate random bits depending on the 
performance of the CPU within 60 seconds before it reseeds with fresh entropy if present which allows the 
generation of large amounts of random data backed by little entropy only in a worst case.

To generate a bit string of 128 bits, the read operation of the ChaCha20 DRNG performs one ChaCha20 
block operation.

In the ideal case the generated bit strings exhibit an equidistribution. Considering the birthday paradox, this 
implies that after 264  blocks of 128 bits each have been generated, probably the following collision is 
present:

The probability that after generating n 128 bit blocks no collisions are present can be calculated as follows. 
The number of possibilities for the output of n pairwise different bit strings of length 128 bits is:

Therefore, the probability that there are no collisions after the generation of n blocks results in

Instead of using the Stirling formula, an easier estimation of the lower boundary for the probability P is 
provided as follows. This rough estimation can be used due to the presence of large numbers:
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Using this rough estimation formula, a lower boundary for the probability P can be obtained using the 
following easy to process formula:

Using this formula, a probability can be calculated that 2  successive bit strings of size 128 bits are pairwise ⁵⁵
different with a probability of P > 0.999996.

Stating the obtained results differently, k > 2  bit strings of size 128 bits can be generated where no ⁵⁵
collisions occur with a probability of P > 1 - ε, with ε = 3.8e-6. This means that with the given probability, 
the bit strings are pairwise different. These values should be put into perspective with the requirement of 
[AIS2031] for AVA_VAN.5 with k>234 and ε < 2-16.

Using the formula with n = 2  the following estimate can be obtained for the probability of having no ⁶⁴
collisions (i.e. the bit strings are pairwise different):

Comparing this value with the precise probability using the initially stated probability for collisions of 
0.3935, the probability for having no collisions is 1 – 0.3935  = 0.6065. Comparing this value with the 
estimated value using the estimation formula it can be concluded that the probabilities P(n) in reality are 
significantly higher than the ones calculated with that formula. This means that significantly more than 2  ⁵⁵
bit strings with a length of 128 bits will be pairwise different with a probability of P > 1 – 2-16. Therefore, it 
can be concluded that random bits obtained from the input pool are resistant against an attacker with high 
attack potential.

To apply the findings to the Linux-RNG ChaCha20 state it can be concluded that the behavior of the that 
state comes close to the ideal case:

• The ChaCha20 state has a size of 256 bits. The pre-image for each ChaCha20 value is therefore large, 
which implies that the assumption of an equidistribution must be considered appropriate. However after 
each ChaCha20 block generation in the worst case only one bit in the instantiated ChaCha20 block 
operation is modified (the counter is incremented by one) in order to generate the next block.

• ChaCha20 was subject to significant assessments considering it became [RFC7539] that have shown that 
generated ChaCha20 blocks are a close approximation of an equidistribution supported by the avalanche 
effect.

• Between the reseeds, the quality of the random numbers rests on the quality of the ChaCha20 block 
operation. Given that the block operation follows an equidistribution, this resting foundation is 
considered satisfied.

Therefore, the ChaCha20 DRNG complies with the requirements of DRG.3.4.

5.2.5 DRG.3.5

The requirement of DRG.3.5 is defined as:

“Statistical test suites cannot practically distinguish the random numbers from output sequences of an ideal 
RNG. The random numbers must pass test procedure A [assignment: additional test suites].”

Section 8.1 provides a rationale for the execution of the Test Procedure A defined in [AIS2031].

Additional statistical tests are applied as covered in section 8.1, which documents the statistical methods 
applied to the output of the ChaCha20 DRNG. In addition, all tests conducted in chapter 6 and following can 
be considered to support the stated requirement.
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Considering section 8.1, the assignment of the requirement can be specified as: “… as well as the dieharder 
test suite, the Chi-Squared test and the test of compressing the generated data with gzip, bzip2, xz and lzma”.

This allows the conclusion that the ChaCha20 DRNG complies with the requirements of DRG.3.5.
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6 Test Series: Raw Entropy
The test series documented in this chapter cover the analysis of the output of the noise sources depicted on 
the lower part of figure 2. The tests are devised so that the unprocessed data recorded from the noise sources 
are measured and obtained for this analysis.

The noise sources with their generated data are described in section 3.5.2. This section also outlined that 
only a subset of the noise sources provide data which is assigned an entropy estimate. The following 
sections only perform an assessment of the noise sources with an entropy estimate. All other noise sources 
mix the entropy pools but do not affect any conclusions drawn in chapter 5 regarding the NTG.1 or DRG.3 
assessment of the Linux-RNG. One exception is to be noted: although hardware random number generators 
can contribute entropy, they are considered specialized hardware which is not present in common 
hardware systems. Furthermore, any assessment requires further analysis of the design of these hardware 
random number generators. As they are commonly proprietary, such information is not publicly available 
preventing a full analysis.

This study attempts to deliver a conservative analysis that should be applicable to a large array of systems 
and use cases. Therefore, if data received from a noise source has questionable entropy content, this study 
assumes a worst-case scenario where the data is assumed to contribute no entropy to the Linux-RNG.

The entropy analysis including the reboot testing is also conducted in compliance with SP800-90B. The 
reason for this approach is that the raw entropy data is not identically and independently distributed (non-
IID) which implies that the Shannon entropy plug-in estimator and the min-entropy plug-in estimator 
allow only limited conclusions to be drawn. The mathematical test analysis provided by SP800-90B together 
with the test tool take the non-IID property into consideration and therefore is considered to be an 
appropriate fit for this testing.

6.1 Analyzed Noise Source Data

Before the analyses of the data from the noise sources are conducted, the noise sources are again discussed 
regarding their produced data and the relevance of that data concerning entropy.

6.1.1 Interrupt Noise Source

As outlined in section 3.5.2.2, the noise source of Interrupts collects different data for each event. Based on 
the following considerations, the implied entropy in the data parts varies significantly:

• The Jiffies time stamp recorded for one interrupt commonly has a resolution of 1000 Hz. Interrupt 
occurrence can be observed by monitoring /proc/interrupts which contains the number of interrupts 
received for each interrupt in real time. The corresponding number is incremented as soon as a new 
interrupt is processed. Considering that an attacker is able to monitor that file and that the increment of 
the numbers in that file happens as soon as an interrupt arrives, it is assumed for this study that the Jiffies 
value awarded for a respective interrupt by the Linux-RNG can be obtained with full accuracy by an 
attacker. This implies that for a worst-case scenario no entropy would be delivered with the Jiffies value. 
Therefore, this Jiffies value will not be further analyzed and is considered to deliver no entropy by this 
study.

• In addition to the Jiffies value, the Linux-RNG records the instruction pointer and the content of one of 
the registers. This data varies depending on the type of interrupt. Yet, for one given interrupt it is 
assumed that these values are predictable. The instruction pointer is constant for a given interrupt. The 
registers may change depending on the recorded data by the hardware device. As the hardware device 
may store data that can be deducted by an attacker, such as memory addresses where hardware event 
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information is found, the study is conservative and treats the data obtained from the registers and the 
instruction pointer as having no entropy. Consequently, such data will not be analyzed.

• Finally, the interrupt noise source records the 32 LSB of the high-resolution time stamp. Albeit the issue 
discussed for Jiffies affects also the high-resolution time stamp, it is of no concern due to the following. 
The high-resolution time stamp has a resolution of nanoseconds. When observing hardware events or 
/proc/interrupts, an attacker must be able to deduce the nanosecond value obtained by the Linux-RNG 
for a given interrupt with a high degree of precision. The degree of precision the attacker must apply to 
deduce the time stamp value must be higher than the entropy awarded to the event by the Linux-RNG. 
In other words, if an attacker can deduce the used time stamp with a precision of, say, 2 bits (i.e. the 
attacker’s uncertainty is only 2 bits), but the Linux-RNG would award this event more than 2 bits, the 
Linux-RNG would overestimate the available entropy. As the Linux-RNG awards between 1 and 64 
interrupts one bit of entropy, a single interrupt is implied to have between 1 and 1/64th bit of entropy. 
Thus, the attacker must deduct the high-resolution time stamp with full accuracy if he wants to 
undermine the entropy estimation of the Linux-RNG. Even when he cannot deduct the last bit with a 
precision better than the random chance of a half, the best attack against the noise source of the 
interrupts is brute force. Therefore, the high-resolution time stamp is considered for further entropy 
analysis.

6.1.2 Block Device Noise Source

Sections 3.5.2.3 and 3.5.2.10 outlines the data obtained by the Linux-RNG for one block device event. Just as 
for the interrupt noise source, the following list discusses each data component regarding its entropy 
contribution:

• With the function add_disk_randomness, the block device number that triggered the event is 
recorded. Hardware commonly has one block device attached, i.e. one hard disk is attached. Therefore, 
this value will always be the same for each event.  Even with two or more hard disks, an attacker can 
trigger block device events on each disk separately. Hence, no or hardly any entropy must be considered 
present with the block device number. Thus, the study will disregard this value for the entropy analysis.

• The function add_timer_randomness adds the high-resolution time stamp to each block device 
event. Albeit an attacker can cause block device events, with the high resolution of the time stamp of 
nanoseconds, it is considered to be impossible to deduct the precise timing of the block device event at 
this resolution, i.e. the attacker would not be able to deduce the LSBs of the time stamp with a precision 
higher than the entropy awarded to the event by the Linux-RNG. Hence, this study will focus on the 
assessment of the high-resolution time stamp for block device events.

6.1.3 HID Noise Source

The HID noise source delivers data as discussed in sections 3.5.2.1 and 3.5.2.10. Again, the following list 
provides a rationale why data components are included or excluded from the entropy assessment:

• The function add_input_randomness records the event number processed by the HID. For 
example, a keyboard records the key number and whether the key was pressed or released. For a mouse, 
commonly two coordinates for the two-dimensional movement are recorded. All these values are 
considered observable by an attacker. This is particularly the case when using the graphical interface of 
X11. As long as an attacking process can interact with the X11 server by having the X11 cookie, the X11 
input facility can be misused to enable a perfect key logger without the need to possess any privilege13. A 

13 To invoke such perfect key logger, the following command can be used:
xinput list | grep -Po 'id=\K\d+(?=.*slave\s*keyboard)' | xargs -P0 -
n1 xinput test
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similar command can be used to obtain mouse movement data. This implies that the HID event data 
must be assumed to have no entropy in the worst-case. Thus, no analysis is performed for this data.

• Like for add_disk_randomness, add_input_randomness invokes 
add_timer_randomness to add the high-resolution time stamp for each HID event. The same 
considerations as outlined in section 6.1.2 apply to HID events. Therefore, the high-resolution time 
stamp is subject for further analysis.

6.1.4 Scheduler-Based Noise Source

The noise source may deliver entropy during boot time as discussed in section 3.5.2.8. The description of the 
scheduler-based noise source given in section 3.5.2.8 outlines that it may be used during boot time but never 
during runtime. The gathering of raw entropy data takes this use case into account and only performs the 
analysis of the entropy obtained during boot time including the testing of the data during reboots as 
provided with section 6.3.

The entropy is obtained by reading the high-resolution time stamp during a tight loop that is interrupted by 
a re-scheduling event. Thus, this time stamp is the raw noise data to be analyzed. The extraction operation 
gathers the 32 LSB of that time stamp to be in line with the data gathered for the other noise sources.

6.2 Min-Entropy Estimation as per SP800-90B

The discussions of the noise sources in section 6.1 concludes that solely the high-resolution time stamp used 
for each event is of relevance to the entropy analysis.

The high-resolution time stamp is recorded using a kernel patch exporting the kernel-collected time stamp. 

To extract the raw noise data from the kernel during run time, a new kernel facility is added that creates one 
DebugFS file per noise source. In addition, for each noise source, that facility maintains one ring buffer of 
1024 32-bit integer values for each noise source. The ring buffer handling is performed with a reader and 
writer function. The writer function ensures that the caller-provided 32-bit integer is written sequentially 
into the ring buffer guaranteeing that any existing data is not overwritten while the gathering operation is 
in progress. The reader operation reads the ring buffer sequentially guaranteeing that at most it reads the 
data up to the point where the writer operation stopped.

The writer of the ring buffer is invoked at well-defined places from the Linux-RNG as described below. The 
reader operation is linked with the DebugFS files.

Only when a read operation is in progress, the writer operation stores data into the ring buffer. This 
guarantees that only current raw entropy data is obtained via the DebugFS files.

In addition, the raw noise data gathering facility can also handle early boot data with the same 
implementation. The only difference is that the writer function will store any data it obtains until the ring 
buffer is full. This implies that the writer function stores even the first entropy event data during boot. The 
reader function allows reading of the ring buffer that was filled during boot time but not altered afterwards.

Specifically, this test framework records the following data:

• HID measurement: to measure the high-resolution time stamp of HID events, the test framework 
instruments add_timer_randomness to read out the high-resolution time stamp from the sample data 
structure (see section 3.5.2.10 for details about this data structure). It takes the 24 LSB of that time stamp. 
These 24 bits are concatenated with an 8 bit integer of the heuristic entropy value awarded to this event. 
The resulting data is a 32 bit integer that is given to the entropy recording facility for pick-up by user 
space.
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• Block device measurement: the test framework is used to record the same data for block devices as 
outlined for HID devices above.

• Interrupt measurement: the test framework instruments add_interrupt_randomness. It obtains 
the high-resolution time stamp for each received interrupt. The full 32 LSB of the time stamp is extracted 
for user space without recording any heuristic entropy information as the Linux-RNG applies a fixed 
estimate of one bit per injection of a fast_pool content into the input pool.

• Scheduler-based entropy measurement: The testing is implemented by modifying the entropy 
harvesting function of try_to_generate_entropy as follows: The loop that performs the 
harvesting of entropy is executed exactly 1024 times instead until the ChaCha20 DRNG is fully seeded. A 
global variable is introduced that is incremented each time the timer fires and would increase the 
heuristic entropy estimator of the Linux-RNG by one. Each time stamp injected into the Linux-RNG is 
extracted for user space to be picked up. To start the testing, an automatic trigger is added to initiate the 
scheduler-based noise source during the late stage of the kernel boot, but before user space starts. Note, 
this trigger is required as the scheduler-based noise source is only initiated if user space queries 
getrandom or /dev/random before the ChaCha20 DRNG is fully seeded.

The recorded data set is simply a set of 32 bit integer values holding the high-resolution time stamps for 
each recorded interrupt. A script is used that triggers the testing to obtain data for 1,000,000 noise source 
events.

The resulting data for the high-resolution time stamp is analyzed for its min-entropy estimation as defined 
in [SP800-90B]. In order to perform the calculations, the type of data to be processed must be determined, 
i.e. whether the input data is IID or non-IID. With a time stamp value, even when it is fast moving and thus 
wrapping within some seconds, it is still a monotonically increasing counter. Therefore, this data set is 
always considered to be non-IID. This determination implies that the following types of min-entropy 
estimations are calculated defined by [SP800-90B]:

• Most Common Value Estimate

• Collision Estimate

• Markov Estimate

• Compression Estimate

• t-Tuple Estimate

• Longest Repeated Substring (LRS) Estimate

• Multi Most Common in Window Prediction Estimate

• Lag Prediction Estimate

• MultiMMC Prediction Estimate

• LZ78Y Prediction Estimate

As documented in [SP800-90B] almost all of these min-entropy estimations can only be calculated for input 
data that has a small width. A high-resolution time stamp has a width of 32 bits (interrupts) or 24 bits (HID / 
block devices), respectively. To allow processing the time stamps with the aforementioned min-entropy 
estimation calculations, the test tools obtain the 8 least significant bits of the time stamp and concatenates 
those 8 bits of all  time stamps into a bit stream. This means that the input data width is now 8 bits instead of 
32 bits. The calculation of the SP800-90B min-entropy estimations using 8 bits instead of 32 bits is 
considered to support the conservative assessment of this study. The following tables therefore provide the 
entropy estimation for 8 bit input data widths. The tool used to calculate the SP800-90B min-entropy  
estimation is available at NIST GitHub repository14.

14 https://github.com/usnistgov/SP800-90B_EntropyAssessment
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For comparison, plug-in estimates for the min-entropy and Shannon entropy based on the empirical 
distribution are calculated as well. The used formulas are provided e.g. in section 2.3.2 of [AIS2031] and are 
not re-iterated here. The time stamp is a monotonically increasing integer which implies that the entropy 
lies in the deltas of the time stamps and the distribution of those deltas. This means that to perform the 
calculation for the nin-entropy and Shannon entropy, the time stamp deltas are used as a basis for the 
calculation. The time stamp deltas are calculated from the adjacent time stamps from the absolute time 
stamps recorded by the measurements.

The calculation of the min-entropy and the Shannon entropy is also performed for the 8 LSB of the time 
stamps to allow an immediate comparison of all values. However, the following additional consideration is 
applied: neither the min-entropy nor the Shannon entropy estimates are applicable to non-IID data. Time 
stamps as delivered by the different noise sources are a monotonically increasing counter value which 
wraps when reaching its maximum. This monotonically increase is a dependency that can be removed by 
calculating the first discrete derivation, i.e. the time delta between adjacent values. Thus, before applying the 
formulas for the Min-Entropy and the Shannon entropy, the time stamps are processed as follows:

1. Calculate the delta between two adjacent time stamps.

2. Obtain the 8 LSB from the time deltas.

The resulting 8 LSB are used to obtain the Shannon entropy and the min-entropy plug-in estimates.

6.2.1 Interrupt Noise Source Entropy Estimation

The collection of data for interrupts was conducted with a worst-case approach. Considering that the 
entropy estimate is fixed irrespective of the raw noise data, the worst case testing is intended to analyze that 
the entropy estimate is always appropriate, i.e. underestimating the available entropy. The worst-case 
covered the approach where a system in close network proximity, i.e. the network switch sent a ping flood 
to the test system. Each received ICMP request and response triggered an interrupt that was recorded.

The worst-case test execution returned the following data.

Entropy Estimation Type Entropy Estimate

Most Common Value Estimate 7.256857

Collision Estimate 7.330672

Markov Estimate 7.93132

Compression Estimate 5.590176

t-Tuple Estimate 6.520281

LRS Estimate 7.522373

Multi Most Common in Window Prediction 
Estimate

6.638383

Lag Prediction Estimate 6.638405

MultiMMC Prediction Estimate 5.306248

LZ78Y Prediction Estimate 5.306244

Table 2: Interrupts: SP800-90B Min-Entropy Estimates  Worst Case

The associated Shannon entropy plug-in estimate is 7.97 bits per interrupt event. The nin-entropy plug-in 
estimate is 6.56 bits per interrupt event.
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The conclusions that can be drawn from the numbers are the following. The high-resolution time stamp of 
each interrupt will return more than three bits of entropy.

The Linux-RNG requires the data of at least 1 interrupt to be collected and mixed into the input pool. The 
entire data from between 1 to 64 interrupt is credited with one bit of entropy during boot time. This implies 
that significantly more entropy is collected than the Linux-RNG will credit.

Even when the fast_pool operation will not retain all entropy delivered by the interrupt noise source data, 
the massive underestimation of entropy by the Linux-RNG is assumed to counter such a potential effect.

As the Linux-RNG massively underestimates the entropy present in the interrupt noise source event data, 
the Linux-RNG acts conservatively and thus upholds the cryptographic strength it reports with its entropy 
estimation.

During runtime of the Linux kernel after the Linux-RNG became fully seeded until a new reboot, however, 
the kernel does not credit entropy to the interrupt data. Therefore, no conclusions can be drawn from this 
data at runtime.

6.2.2 Block Device Noise Source Entropy Estimation

On contemporary hardware with a lot of RAM, a normal usage of block devices will cause insignificant block 
device events. This is due to the fact that the entire unused portion of RAM is used as a buffer cache to 
prevent repeating disk accesses. To obtain sufficient data, a worst-case has been measured. This worst-case 
has been implemented by constantly writing 10 MB of data onto a block device where the file is opened with 
O_SYNC causing the bypassing of the buffer cache. The worst-case produced the following data:

Entropy Estimation Type Entropy Estimate

Most Common Value Estimate 7.890384

Collision Estimate 7.544968

Markov Estimate 7.9964

Compression Estimate 7.208808

t-Tuple Estimate 7.890384

Longest Repeated Substring (LRS) Estimate 7.928188

Multi Most Common in Window Prediction 
Estimate

7.949105

Lag Prediction Estimate 7.955759

MultiMMC Prediction Estimate 7.977489

LZ78Y Prediction Estimate 7.976726

Table 3: Block Devices: SP800-90B Min-Entropy Estimates – Worst Case

Using the Shannon entropy plug-in estimate, 8 bits per block device event is calculated. A value of 7.941 bits 
per block device event is calculated with the min-entropy plug-in estimate.

During runtime of the Linux kernel after the Linux-RNG became fully seeded until a new reboot, however, 
the kernel does not credit entropy to the block device data.

Similar to the interrupt noise source, a “normal use case” test is performed with the block device noise 
source. This normal case consisted of several Linux kernel compilation runs, some wait time inbetween, 
starting of various user applications like a browser or word editor.
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The following data for the normal use case is collected:

Entropy Estimation Type Entropy Estimate

Most Common Value Estimate 7.835243

Collision Estimate 8

Markov Estimate 7.974104

Compression Estimate 6.914048

t-Tuple Estimate 7.333766

Longest Repeated Substring (LRS) Estimate 7.718814

Multi Most Common in Window Prediction 
Estimate

7.863313

Lag Prediction Estimate 7.912553

MultiMMC Prediction Estimate 7.900896

LZ78Y Prediction Estimate 7.901578

Table 4: Block Devices: SP800-90B Min-Entropy Estimates – Normal Use Case

The Shannon entropy plug-in estimate shows 7.999 bits per block device event. 7.888 bits per block device 
event are calculated with the min-entropy plug-in estimate.

The measured values show that sufficient entropy is present. However, as the Linux-RNG does not perform 
any entropy heuristics at runtime, no conclusions can be drawn from them.

6.2.3 HID Noise Source Entropy Estimation

The entropy measurements for HID is only performed for regular use cases. No worst-case scenario can be 
devised for HID. 

To perform testing of the HID noise source within a reasonable time, a small but effective test system was 
devised: a mouse was placed on a loop-sided surface. The cable of the mouse was connected to a mobile 
office fan which swings its fan. Due to the movement of the fan, the mouse was moved as well in a regular 
fashion. The quite regular movement can be considered as a form of worst-case since a normal user would 
not move a mouse in a regular fashion for long hours. The entropy estimates for the high-resolution time 
stamp applied to those events are listed in the table below.
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Entropy Estimation Type Entropy Estimate

Most Common Value Estimate 7.883070

Collision Estimate 7.451912

Markov Estimate 7.982736

Compression Estimate 7.200336

t-Tuple Estimate 7.295390

LRS Estimate 7.892103

Multi Most Common in Window Prediction 
Estimate

7.961163

Lag Prediction Estimate 7.740675

MultiMMC Prediction Estimate 7.688495

LZ78Y Prediction Estimate 7.688474

Table 5: HID: SP800-90B Min-Entropy Estimates 

The Shannon entropy plug-in estimate applied on the data set results in 7.979 bits per HID event. 7.627 bits 
per HID event are calculated when using the min-entropy formula.

Just like the disk noise source, the HID noise source is not credited with entropy at runtime of the Linux 
kernel after the Linux-RNG became fully seeded until a new reboot. The measured values show that 
sufficient entropy is present. However, as the Linux-RNG does not perform any entropy heuristics at 
runtime, no conclusions can be drawn from them.

6.2.4 Conclusion of SP800-90B Measurements

The conclusions given for each noise source regarding the SP800-90B measurements are collectively 
summarized as follows.

For all noise sources that contribute entropy to the Linux-RNG, the Linux-RNG applies no heuristic entropy 
estimation during runtime of the Linux kernel after the Linux-RNG became fully seeded until a new reboot. 
It simply reseeds the DRNG from the available data, irrespective whether it is good or bad or non-existent 
data.

Therefore, the Linux-RNG cannot overestimate the available entropy.

During boot time, the Linux-RNG applies 1 bit of entropy per interrupt. This is a significant underestimation 
of available entropy which implies that when reaching the fully seeded level, the input pool received 
significantly more than 256 bits of entropy. The measurements show that on the fully seeded level was 
reached before block devices or HID devices became available. Thus, the entropy contribution from those 
devices with their entropy heuristic based on Jiffies was not applied by the Linux-RNG.

However, this verdict leads to the conclusion that no real statements about the entropy behavior of the 
Linux-RNG can be given. If entropy events are received, they are used to seed the DRNG. If no or very little 
events were received, the DRNG still reseeds from the input pool that received little to no entropy.

With the lack of any health test, the Linux-RNG cannot detect a degradation of is entropy source. This issue 
aggravates the conclusion that the entropy behavior during runtime cannot be determined.
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6.3 Entropy During Early Boot

The measurements of the raw noise source data shows that at runtime, the Linux-RNG entropy estimator 
maintained for an entropy pool indicates at least the cryptographic strength of the data present in that 
entropy pool.

At runtime, when sufficient data is added to the entropy pool, the Linux-RNG state is always considered to 
be sufficiently strong.

However, the following question must be raised: are the noise source data received by the Linux-RNG 
during early kernel boot time equally entropic to support cryptographically strong random numbers to be 
produced by the Linux-RNG during boot time? This question is of particular importance to system services 
requiring seed data from /dev/random or /dev/urandom during system boot time.

The following test has been devised to measure the entropy during early boot. This test considers that 
during early boot, only interrupts are triggered and received. No block device is yet set up, and no HID is 
initialized to allow users to interact with the system. Therefore, testing is limited to measure interrupt event 
data as well as the scheduler-based noise source. As outlined in section 6.1.1, only the high-resolution time 
stamp recorded for interrupts is of interest to entropy measurements. In addition, the scheduler-based noise 
source is relevant during boot time as well.

The Linux kernel has been modified with the test framework discussed in section 6.2. The explanation of 
that test framework shows that it is equally applicable to measure the boot time raw unconditioned noise 
data. To be in line with [SP800-90B] section 3.1.4, the test framework obtains the data from the first 1000 
interrupt events as well as the first 1000 scheduler-based noise source events.

The test is performed for 1,000 reboot cycles for the virtual environment as well as for the bare-metal 
environment. 

The first analysis performs a row-wise and column-wise SP800-90B min-entropy estimate calculation 
discussed in [SP800-90B] section 3.1.4. In addition, the sanity test outlined in [SP800-90B] section 3.1.4 is 
calculated as well.

The testing of the early boot entropy is conducted twice due to its importance. The first test is performed in 
a virtualized environment. This environment has very few devices that can trigger interrupts. This means 
that the time until 1000 interrupts are received is longer relative to the boot time of the Linux kernel. Yet, 
more variations must be expected as the virtual machine monitor may reschedule the virtual machine guest 
that is tested. Such rescheduling operations may introduce delays which would be visible with more 
variations in the time stamps. The second early boot entropy test is executed with a Linux kernel executing 
directly on hardware. This hardware has more devices that can deliver interrupts. Yet this test environment 
is not affected by virtual machine monitor rescheduling events.

The calculation of the 8 LSBs from the time delta for the Shannon entropy and min-entropy as discussed in 
section 6.2 is applied to the row-wise time stamp data. For the column-wise , the 8 LSB of the time stamps 
without the delta calculation are used with the formulas for the Shannon entropy and min-entropy. The 
reason is that there is no monotonically increasing timer dependency between, say, the first time stamp of 
an event from one reboot compared to the first time stamp of another reboot.

6.3.1 Early Boot Interrupt Entropy Testing in a Virtual Environment

As outlined in [SP800-90B] section 3.1.4, the data obtained from the reboot tests shall be placed into a matrix 
with 1000 columns referencing the 1000 consecutive event values obtained from one reboot. Each row in 
that matrix references one reboot.

The generated matrix is to be processed row-wise and column-wise. Thus, the analysis results in separate 
conclusions for the row-wise and column-wise assessment.
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The SP800-90B entropy estimates are calculated for each time stamp row and column out of the generated 
matrix.

6.3.1.1 Column-Wise Reboot Data Assessment

When processing the raw data column-wise, for each column, the SP800-90B min-entropy estimates, the 
Min-Entropy as well as the Shannon-Entropy plug-in estimates are calculated. Instead of listing 1000 values 
for each aspect, the following table provides the minimum values calculated over all columns.

Lowest SP800-90B min-
entropy estimate of 8 Bits 

Width Time Stamp

Min-Entropy 
Plug-in Estimate 

of 8 Bits Width 
Time Stamp

Shannon 
Entropy Plug-in 

Estimate of 8 Bits 
Width Time 

Stamp

Minimum entropy 
estimation

7.719 6.0589 7.737

Table 6: Interrupts: Early Boot SP800-90B Min-Entropy Estimates in Virtual Environment – Column-Wise

The table shows that the high-resolution time stamp of each of the first 1000 interrupts has an SP800-90B 
min-entropy estimate of 7.7 bits of entropy per interrupt event. Considering the min-entropy plug-in 
estimate applied to the time deltas (i.e. the difference of two adjacent time stamps), the value 6.0 bits per 
interrupt event. The Shannon entropy values for the time deltas are even higher and are close to the 
maximum of 8 bits per interrupt event.

To allow the reader to get a graphical view of the time stamp distribution, figure 8 is provided. Considering 
the statement above regarding time deltas, such time deltas are used as a basis for the distribution graph 
instead of absolute time stamps. Therefore, figure 8 shows the time delta distribution of the time stamps 
recorded for the first and second interrupt – the X-axis presents the number of ticks of the time delta.

The histogram shows that the time delta is widely distributed over the entire continuum of possible time 
delta values. It shows some concentration of time deltas in the low end of the possible range of time delta 
values ranging from zero to 232. The two green bars show the 25% and 75% quartile of the data set.
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The measured time stamps of the first 1000 interrupts visualized in figure 8 allows the conclusion that the 
entropy present in the time stamps is already sufficiently large for achieving a commonly required security 
strength of 128 bits. As these first 1000 interrupts are not obtained from block device or HID events, the 
correlation issue outlined in section 6.2.4 is not applicable. Therefore, the Linux-RNG massively 
underestimates the boot-time entropy present with the interrupt time stamps.

Finally, [SP800-90B] section 3.1.4 mandates that the minimum value of the column-wise calculated SP800-
90B min-entropy estimations must not be less than half of the one obtained during runtime discussed in 
section 6.2.1. This requirement is verified by the aforementioned NIST tool.

6.3.1.2 Row-Wise Reboot Data Assessment

In addition to the column-wise assessment, [SP800-90B] section 3.1.4 requires a row-wise assessment. With 
the collection of data from 1,000 reboots, the data set encompasses 1,000 entropy values. Like for the 
column-wise data assessment,  minimum values are provided in the following table.

Lowest SP800-90B min-
entropy estimate of 8 Bits 

Width Time Stamp

Min-Entropy 
Plug-in Estimate 
of 8 Bits of Time 

Delta

Shannon 
Entropy Plug-in 

Estimate of 8 Bits 
of Time Delta

Minimum entropy 
estimation

6.638 5.964 7.703

Table 7: Interrupts: Early Boot SP800-90B Min-Entropy Estimates in Virtual Environment – Row-Wise
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Similarly to the column-wise assessment, figure 9 shows the row-wise time deltas for the first and second 
event. To make the graphic more readable, only the 90% quantile of the time delta is depicted. The 
remaining 10% cover such a large value span with so little probability of occurrence that they would render 
the graphic unreadable.

Just like for the column-wise entropy values, the minimum SP800-90B entropy estimate for the row-wise 
analysis must not be less than half of the runtime entropy rate. This again is verified by the NIST SP800-90B 
entropy assessment tool.

6.3.1.3 SP800-90B Sanity Test

In addition to the row-wise and column-wise entropy assessment, [SP800-90B] section 3.1.4 also mandates a 
sanity test. To calculate the sanity test, the entire time stamp is used as this sanity test is not intended to 
provide a lower boundary for the entropy estimate but rather shall verify that the collected data in general is 
usable. 

In addition, the sanity test requires that an anticipated entropy rate is provided for the calculation. The 
entropy rate expected to be present is at least 1 bit of entropy per time stamp as at least 64 interrupts are 
required to be gathered before injecting the data into the input pool and increase the entropy estimator by 
one during boot.

The following data is obtained from the sanity test:

• Maximum number of occurrences of a value: 2

• By using an anticipated entropy of at least 1 bit per time stamp, the sanity test passes.
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6.3.2 Early Boot Scheduler-Based Entropy Testing in a Virtual Environment

The scheduler-based noise source that may be active during boot time contributes to the initial seeding of 
the ChaCha20 DRNG as outlined in section 3.5.2.8. This implies that this noise source is to be assessed in the 
same way as the interrupt noise source in section 6.3.1. The following subsections therefore apply the same 
test concepts.

Before showing the measured numbers, an interesting detail must be mentioned that was detected during 
the data collection: The scheduler-based entropy event data was started in the late kernel boot stage and its 
entropy collection duration reached into the early user space boot. During the data collection, the Linux 
kernel never awarded any entropy using its entropy heuristic to the scheduler-based noise source data.

6.3.2.1 Column-Wise Reboot Data Assessment

When processing the raw data column-wise, for each column, the SP800-90B min-entropy estimates, the 
min-entropy as well as the Shannon-Entropy values are calculated. Instead of listing 1000 values for each 
aspect, the following table provides the minimum values calculated over all columns.

Lowest SP800-90B min-
entropy estimate of 8 Bits 

Width Time Stamp

Min-Entropy 
Plug-in Estimate 

of 8 Bits Width 
Time Stamp

Shannon 
Entropy Plug-in 

Estimate of 8 Bits 
Width Time 

Stamp

Minimum entropy 
estimation

7.870 6.060 7.738

Table 8: Scheduler-Based Noise Source: Early Boot SP800-90B Min-Entropy Estimates in Virtual Environment – 
Column-Wise

The table shows that the high-resolution time stamp of each of the first 1000 scheduler events has an SP800-
90B min-entropy estimate of 7.8 bits of entropy per event. Considering the min-entropy plug-in estimate 
applied to the time deltas (i.e. the difference of two adjacent time stamps), the values is 6 bits per scheduler 
event. The Shannon entropy plug-in estimate values for the time deltas are even higher and is close to the 
maximum of 8 bits per interrupt event.

A graphical view of the time stamp distribution for the first time delta is provided with, figure 10.
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The measuredtime stamps of the first 1000 scheduler-based noise source events visualized in figure 10 and 
the consideration that in the worst case at most one bit of entropy is harvested from one time stamp allow 
the conclusion that the entropy present in the time stamps is already sufficiently large for achieving a 
commonly required security strength of 128 bits. The Linux-RNG massively underestimates the boot-time 
entropy present with the scheduler-based noise source event time stamps.

6.3.2.2 Row-Wise Reboot Data Assessment

The minimum values for the different entropy estimations are provided in the following table.

Lowest SP800-90B min-
entropy estimate of 8 Bits 

Width Time Stamp

Min-Entropy 
Plug-in Estimate 
of 8 Bits of Time 

Delta

Shannon 
Entropy Plug-in 

Estimate of 8 Bits 
of Time Delta

Minimum entropy 
estimation

2.530 1.936 3.492

Table 9: Scheduler-Based Noise Source: Early Boot SP800-90B Min-Entropy Estimates in Virtual Environment – 
Row-Wise

Similar to the column-wise assessment, figure 11 shows the row-wise time deltas for the first and second 
event.
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The graph for the row-wise entropy assessment, i.e. the entropy provided by the scheduler-based noise 
source during one boot operation, shows a very large concentration of the time deltas either on the absolute 
high-side. This figure supports the lower values for the different min-entropy estimates.

Yet, the Linux-RNG at most awards one bit of entropy per time stamp. Thus, the measured numbers show 
that the Linux-RNG underestimates the available entropy in that worst-time assumption. Please note that 
during the collection of the 1000 scheduler-based noise source events, the kernel never awarded any 
entropy using its entropy heuristic. This shows that the kernel massively underestimates the available 
entropy.

6.3.2.3 SP800-90B Sanity Test

The anticipated entropy rate to be applied for the scheduler-based noise source SP800-90B sanity test is 
assumed to be 1 bit. This is a worst case assumption due to the following: In a worst case, the timer 
increasing the entropy estimator by one bit fires after each obtained time stamp. In this worst case, each 
time stamp is assumed to have at least one bit of entropy.

The following data is obtained from the sanity test:

• Maximum number of occurrences of a value: 72

• By using an anticipated entropy of 1 bit per time stamp, the sanity test passes.

6.3.3 Early Boot Interrupt Entropy Testing on Native Hardware

The test to obtain early boot data used as input to the Linux-RNG is re-performed with the Linux kernel 
executing on native hardware. This re-testing is provided to allow a comparison between a virtual and a 
native environment. The virtual environment has fewer devices compared to native hardware and thus 
generates fewer interrupts during boot as fewer devices need to be initialized and interacted with. It is 
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expected that this property reduces the amount of entropy present in the measurements for virtual 
environments. Conversely, virtual environments are subject to frequent re-scheduling events performed by 
the host. Such rescheduling events increase the variations of the interrupt event time stamps which can be 
interpreted as entropy. A Linux kernel executing on native hardware is not subject to scheduling events 
enforced by external entities. Thus, the time stamps picked up by the Linux-RNG interrupt noise source 
executing on native hardware should have fewer variations.

Both described effects oppose each other, i.e., the one effect is expected to increase the entropy on native 
hardware whereas the other is expected to decrease the entropy. To obtain a better understanding of the 
magnitude of the effects, the early boot interrupt event time stamps are obtained for a Linux-RNG 
executing on native hardware.

6.3.3.1 Column-Wise Reboot Data Assessment

The following SP800-90B min-entropy estimates, the Min-Entropy as well as the Shannon-Entropy values 
are calculated

Lowest SP800-90B min-
entropy estimate of 8 Bits 

Width Time Stamp

Min-Entropy 
Plug-in Estimate 

of 8 Bits Width 
Time Stamp

Shannon 
Entropy Plug-in 

Estimate of 8 Bits 
Width Time 

Stamp

Minimum entropy 
estimation

6.638383 5.878 7.738

Table 10: Interrupts: Early Boot SP800-90B Min-Entropy Estimates in a Native Environment – Column-Wise

The interpretation of the table is identical to the table presented for the virtual environment boot time 
measurements.

The different statistical entropy values calculated from the measurements of the first interrupt event time 
stamps obtained by the Linux-RNG after boot on native hardware do not deviate significantly from the 
same values obtained on a virtual environment. Thus, the mentioned contrary effects are concluded to 
cancel each other out or are insignificant to the overall entropy present in the Linux kernel boot process.

A graphical representation of the values presented in the table is given in figure 12. It shows the histogram 
of the delta between the first and the second interrupt event time stamp of each boot cycle recorded by the 
Linux-RNG where the X-axis represents the number of ticks of the high-resolution time stamp between the 
occurrence of both interrupts.
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Starting with the second time delta depicted in figure 13, the distribution of the time delta values exhibits 
more distinct spikes. Yet, considering the scales of the X and Y axis, the distribution is sufficiently large to 
support the conclusion of the presence of sufficient entropy.
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With the obtained results, the same conclusions for the measurements in virtual environments given in 
section 6.3.1 can be drawn. Disregarding the correlation problem due to the presence of only the interrupts 
as discussed above, and considering that the Linux-RNG awards the time stamps between 1 to 64 interrupts 
only one bit of entropy, the Linux-RNG is considered to massively underestimate the entropy present in the 
interrupt time stamps during early boot.

Just like for the measurements and results of the testing in virtual environments, the NIST tool verified that 
the column-wise entropy is not less than half of the runtime entropy value.

6.3.3.2 Row-Wise Reboot Data Assessment

In addition to the column-wise assessment, [SP800-90B] section 3.1.4 requires a row-wise assessment. With 
the collection of data from 1,000 reboots, the data set encompasses 1,000 entropy values. Like for the 
column-wise data assessment, the minimum values are provided in the following table.

Lowest SP800-90B min-
entropy estimate of 8 Bits 

Width Time Stamp

Min-Entropy 
Plug-in Estimate 
of 8 Bits of Time 

Delta

Shannon 
Entropy Plug-in 

Estimate of 8 Bits 
of Time Delta

Minimum entropy 
estimation

7.276950 5.964 7.739

Table 11: Interrupts: Early Boot SP800-90B Min-Entropy Estimates in a Native Environment – Row-Wise

Similar to the column-wise assessment, figure 14 shows the row-wise time deltas for the first and second 
event.
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Just like for the column-wise entropy values, the minimum SP800-90B entropy estimate for the row-wise 
analysis must not be less than half of the runtime entropy rate. This again is verified by the NIST SP800-90B 
entropy assessment tool.

6.3.3.3 SP800-90B Sanity Test

The following data is obtained from the sanity test with the same considerations as outlined in section 
6.3.1.3:

• Maximum number of occurrences of a value: 2

• By using an anticipated entropy of 1 bit per time stamp, the sanity test passes.

6.3.4 Early Boot Scheduler-Based Entropy Testing in a Native Environment

The scheduler-based noise source behavior on native hardware is shown in this section.

6.3.4.1 Column-Wise Reboot Data Assessment

When processing the raw data column-wise, for each column, the SP800-90B min-entropy estimates, the 
Min-Entropy as well as the Shannon-Entropy values are calculated. Instead of listing 1000 values for each 
aspect, the following table provides the minimum values calculated over all columns.
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Lowest SP800-90B min-
entropy estimate of 8 Bits 

Width Time Stamp

Min-Entropy 
Plug-in of 8 Bits 

Width Time 
Stamp

Shannon 
Entropy Plug-in 

Estimate of 8 Bits 
Width Time 

Stamp

Minimum entropy 
estimation

4.302038 6.059 7.741

Table 12: Scheduler-Based Noise Source: Early Boot SP800-90B Min-Entropy Estimates in a Native Environment – 
Column-Wise

The table shows that the high-resolution time stamp of each of the first 1000 scheduler-based noise source 
events has an SP800-90B min-entropy estimate of 4.3 bits of entropy. Considering the Min-Entropy plug-in 
estimator applied to the time deltas (i.e. the difference of two adjacent time stamps), a value of 6.0 bits per 
event is measured. The Shannon entropy plug-in estimate values for the time deltas is 7.7 bits per event.

A graphical view of the time stamp distribution for the first time delta is provided with figure 15.

The table with the Min-Entropy for the time stamps of the first 1000 events visualized in figure 15 and the 
consideration that in the worst case at most one bit of entropy is harvested from one time stamp allow the 
conclusion that the entropy present in the time stamps is already sufficiently large for achieving a 
commonly required security strength of 128 bits. The Linux-RNG underestimates the boot-time entropy 
present with the scheduler-based noise source event time stamps.

6.3.4.2 Row-Wise Reboot Data Assessment

The high and low values for the different entropy estimations are provided in the following table.
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Lowest SP800-90B min-
entropy estimate of 8 Bits 

Width Time Stamp

Min-Entropy 
Plug-in Estimate 
of 8 Bits of Time 

Delta

Shannon 
Entropy Plug-in 

Estimate of 8 Bits 
of Time Delta

Minimum entropy 
estimation

0.052736 0.917 2.124

Table 13: Scheduler-Based Noise Source: Early Boot SP800-90B Min-Entropy Estimates in a Native Environment – 
Row-Wise

Similar to the column-wise assessment, figure 16 shows the row-wise time deltas for the first and second 
event.

Similarly, to the data for the scheduler-based noise source in virtual environments, the graph for the row-
wise entropy assessment, i.e. the entropy provided by the scheduler-based noise source during one boot 
operation, shows a significant concentration of the time deltas on the low side supporting the low SP800-
90B entropy estimates.

The Linux-RNG at most awards one bit of entropy per time stamp. In this worst case, the Linux kernel 
would overestimate the entropy significantly. However, note that during the collection of the 1000 
scheduler-based noise source events, the kernel never awarded any entropy using its entropy heuristic. This 
shows that the kernel underestimates the available entropy during the measurement.

The SP800-90B requirement that the row/column-wise entropy assessment should not be less than half of 
the runtime entropy is not met. Thus, SP800-90B considers this noise source as inappropriate which should 
be treated with zero bits of entropy.
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6.3.4.3 SP800-90B Sanity Test

The anticipated entropy rate to be applied for the scheduler-based noise source SP800-90B sanity test is 
assumed to be 1 bit. This is a worst case assumption due to the following: In a worst case, the timer 
increasing the entropy estimator by one bit fires after each obtained time stamp. In this worst case, each 
time stamp is assumed to have at least one bit of entropy.

The following data is obtained from the sanity test:

• Maximum number of occurrences of a value: 100

• By using an anticipated entropy of 1 bit per time stamp, the sanity test passes.

6.3.5 Conclusions of Early Boot Entropy Measurements

The measurements of the entropy contained in the interrupt event time stamps recorded by the Linux-RNG 
for the first 256 interrupts show that it amounts to significant values. The entropy per time stamp recorded 
for one interrupt considerably exceeds one bit. On the other hand, the scheduler-based noise source shows 
mixed results: the reboot tests in virtual environments show it is usable, but on bare-metal those test 
indicate the noise source should not be used. To be on the safe side, it should be generally treated with zero 
bits of entropy.

When interpreting the entropy measurements with a safety margin to assume worst-case scenarios by 
cutting the measured values in half, the entropy values are still more than one bit of entropy per time 
stamp. For the following discussion, one bit of entropy per time stamp is assumed. Thus, the measurements 
show that collecting 128 interrupt event time stamps while booting is sufficient to cover the initial seeding 
requirements set forth by the German BSI with [TR021021] as well as [SP800-131A] specified by the US NIST.

Applying the general Linux-RNG entropy heuristics, the Linux-RNG significantly underestimates the 
available entropy. This finding is supported by the fact that the correlation problem between interrupts on 
one side and HID / block device noise sources on the other side as discussed above is not in full effect during 
early boot. Based on the aforementioned measurements and applying the discussed safety margin where 
each time stamp is considered to contain one bit of entropy, 256 bits of entropy are injected into the 
ChaCha20 DRNG state before the Linux-RNG is defined to be fully seeded and the blocking interfaces are 
released. This allows the conclusion that when the two interfaces unblock, sufficient entropy has been 
accumulated available for use cases with strong cryptographic requirements.

The measurements of the available entropy during boot for virtual environments and native hardware 
hardly differ. Thus, the conclusion is equally applicable to both environments.

It is important to note that this conclusion is only applicable to environments with a high-resolution time 
stamp. Hardware architectures with a low-resolution time stamp will not have significant amounts of 
entropy after boot.

Even the getrandom system call always provides data from a sufficiently seeded DRNG. This finding is not 
applicable to /dev/urandom or even the get_random_bytes in-kernel API, as explained by the 
following observations:

• On the test system executed within a virtual environment, the kernel boot process completes after 
around one second after the start of the boot process. At that time, the user space from the initramfs is 
started. The first 128 interrupts are received at around this time when user space starts. Interrupts are 
collected in per-CPU fast_pools. A copy of a fast_pool is injected into the input pool after the fast_pool 
received between 1 and 64 interrupts. This implies that 256 fast_pools with at least one interrupt are 
required to be injected into the input pool to reach the seeding level of 256 bits of entropy. This implies 
that a large number of interrupts are required during boot time to fulfill that requirement.
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• Executing the Linux-RNG on native hardware shows that the kernel boot process is finished some two 
seconds after boot. By that time it is likely but not guaranteed that 256 interrupts are received. Thus, the 
outlined consideration for /dev/urandom is still relevant for native hardware, though with a lesser 
probability.
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7 Test Series: State Transition Function of DRNG
With chapter 6, the analysis of the unprocessed data obtained from the noise sources was conducted. The 
Linux-RNG receives that data and mixes it into the input pool using the Blake2s operation. When data is 
injected into the Blake2s state, it is mixed with the residual data including data obtained prior the last hash-
final operation. This is the basis for the generation of ChaCha20 DRNG key.

This chapter analyzes the state transition function used to process input data and to update the internal 
state used for the deterministic processing.

This chapter is separated into two main components:

• The first set of tests performs an analysis of the state transition function without using any data from the 
noise sources. This is done by extracting the state transition function of the Linux-RNG into standalone 
code. This standalone code can now be invoked with arbitrary input data to study the behavior of the 
function. To allow the reader to reproduce the results of this test, the extracted code for the state 
transition function is identical to the corresponding code in the random.c Linux kernel code. The 
functions that deliver the input are changed such that a counter starting at one is increased by one with 
each request and provides the input data. The state after the completion of the state transition function is 
dumped as a hexadecimal string for the analysis.

• In a second set of tests, the state transition function of an operational Linux-RNG is monitored. 
Snapshots of the state content after the state transition function has processed the entire state are taken 
and analyzed once to see whether they exhibit characteristics of an ideal random number generator.

7.1 Standalone Operation of State Transition Functions

The code that is extracted from random.c is marked as such in the C code used for the following tests. The 
extracted code is identical to the Linux kernel code to allow an immediate confirmation that the state 
transition functions used by the Linux-RNG are analyzed.

To utilize the state transition functions, the following additional code is added:

• The code from the state transition function is part of a user space application. This means that a main 
function is present as the entry function used during startup of the application.

• The state transition function requires input data. In the Linux kernel code, the data from the noise 
sources is mixed into the input pool. The ChaCha20 DRNG uses the output data from the input pool. The 
data is replaced by a data generating function which maintains an 8 bit variable, i.e. C character data type. 
That variable is used as a counter which is incremented by one each time new data is requested. When 
the variable reaches 255, it will wrap back to zero upon the next increment. This allows a byte-wise 
analysis of the behavior of the state transition function.

• The state transition function may require helper code which is added. The following types of helper code 
are added:

• For the ChaCha20 operation, the ChaCha20 block function is implemented. To ensure that this block 
function operates correctly, a self-test is added using the test vectors from [RFC7539] section 2.3.2.

• Converter code from binary into hexadecimal representation is added.

• Particularly for the ChaCha20 code extracted from random.c, code fragments in the extracted functions 
had to be commented out as it covered aspects not applicable to the test code. The original code is still 
left in the test code, but commented out to allow reviewers to verify that the applied changes are 
appropriate. These changes include:
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• Limiting the number of secondary ChaCha20 DRNGs to one. This can be justified because all 
secondary DRNGs are processed identically.

• Disabling the reseed timer enforcement. As mentioned in the ChaCha20 DRNG design, the ChaCha20 
DRNG is reseeded every 60 seconds. As this is irrelevant for testing, the respective trigger code is 
disabled.

• Removing the locking code because the testing executes single-threaded.

7.1.1 Blake2s State Transition Function

The processing of the input pool is equivalent to concatenating all input data and calculate a Blake2s 
message digest and use the result as a key to the new Blake2s state.

7.1.2 ChaCha20 State Transition

To demonstrate the ChaCha20 state transition behavior, the test code exports the kernel implementation 
into user space for analysis.

The code provides a snapshot of the ChaCha20 state after each operation is applied as part of the state 
transition operation. Thus, the code allows the assessment of the following aspects:

• The ChaCha20 DRNG initialization fills the key part of the state as well as the counter and the nonce part. 
The initial fixed values are filled with the known ASCII string.

• ChaCha20 DRNG reseed provides well-defined seed information to allow studying whether the 
application of the cryptographic operation has any weaknesses.

• The generation of data results in data showing the characteristics of an ideal random number generator 
even though the seed is deterministic. The seed fills the buffer byte-wise with an increasing integer.

The test assumes the presence of only one secondary ChaCha20 DRNG. If more are present, they will adhere 
to the same behavior outlined in the following

After initialization before the ChaCha20 DRNGs are used for anything, the base ChaCha20 DRNG state is:

00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000

The secondary ChaCha20 DRNG state is:

00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000

That ChaCha20 state shows the expected content: the ChaCha20 key is zero

After requesting one random bit stream to be generated, the base ChaCha20 state is:

023f3720 3a2476c4 2566a61c c55c3ca8 75dbb4cc 41c0deb7 89f8e7bf 88183638

and the secondary ChaCha20 DRNG state is:

00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000

The base ChaCha20 DRNG was seeded with 0x01 followed by a ChaCha20 block operation whose 256 most 
significant bits are the new ChaCha20 DRNG state. The secondary ChaCha20 DRNG is not used as the test 
specifies that the Linux-RNG is not yet initialized.

A second request for random bits where the Linux-RNG is assumed to be early seeded, which implies that 
the secondary ChaCha20 DRNG is still not used, but a separate seeding of the base ChaCha20 DRNG from 
the input pool is not performed, looks similar: After fulfilling the request, the base ChaCha20 DRNG state is:

b066b2f2 c8b84002 dd7319a2 c023597b cebd2d2f 63eca4c4 3a9d2db4 7cf71740
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and the secondary ChaCha20 DRNG:

00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000

Before the third request, the Linux-RNG is assumed to receive sufficient entropy to be fully seeded. This 
triggers a reseed of the base ChaCha20 DRNG. In the testing, the reseed returns the bytes 0x02. The base 
ChaCha20 DRNG state looks as follows:

02020202 02020202 02020202 02020202 02020202 02020202 02020202 02020202

This indicates that the data from the input pool overwrites any existing key material.

From this point on, the base ChaCha20 only seeds the secondary ChaCha20 DRNG and is otherwise 
dormant. The request for random bits is satisfied by the secondary ChaCha20 DRNG: The base ChaCha20 
DRNG state after the generation is:

f6a12ca8 ffc30a66 ca140ccc 72763361 15819361 186d3f53 5dd99f8e aaca8fce

and the secondary ChaCha20 DRNG:

66312b5d 6bef4b5e d7b2fc8f e2ec3fec abfccae2 b187eb62 c3e7ee70 4bc5d1dd

Processing the next request for random numbers leaves the following states: The base ChaCha20 DRNG 
state after the generation is:

f6a12ca8 ffc30a66 ca140ccc 72763361 15819361 186d3f53 5dd99f8e aaca8fce

and the secondary ChaCha20 DRNG:

a12591fe 04f43ee2 87c4002f b9fe260b 608293fa 7828076f b0ec8d67 5259cb2d

This indicates that the base ChaCha20 DRNG is left unchanged and unused when satisfying the request for 
random bits. When now obtaining 100,000 blocks from the secondary ChaCha20 DRNG without reseeding, 
the resulting data shows the following statistical properties:

• The Chi-Squared value when treating the data stream as bit-wise is 46.94 which indicates the 
characteristics of an ideal random number generator.

• The Chi-Squared value for a byte-wise processing of the data stream is 61.59 which also indicates the 
characteristics of an ideal random number generator.

• All compression algorithms deliver a “compressed” data whose size is larger than the original data 
stream. This implies that no structures are found by the compression algorithms, which is an indication 
that the data stream exhibits the characteristics of an ideal random number generator.

• All tests defined by the test procedure A are passed.

7.2 AIS 20/31 Test Procedure A for Entropy Pool

Considering that the entropy pool is a self-feeding Blake2s message digest loop and Blake2s is considered to 
be cryptographically strong, the test procedure A has not been applied to this output assuming it will not 
show any deviations as otherwise Blake2s must be considered to be broken.
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8 Test Series: DRNG Output Functions
The test series in this chapter is not so much about entropy and its maintenance, but it rather focuses on the 
correctness of the different DRNG output functions. The goal is to identify problems in such output 
functions highlighted with issues like CVE:2013-4345 which indicates an off-by one issue in the Linux 
kernel ANSI X9.31 DRNG output function. Or even the error introduced by the author of this study to the 
SP800-90A DRBG present in the Linux kernel crypto API causing truncated outputs, which he fixed with the 
patch 8ff4c191d1123ea1ba610dbc25e93568d9e7756c contained in the upstream Linux kernel Git tree. These 
bugs are caused when random data shall be produced that are not equal to the block size of the 
deterministic random number generation process, i.e. the block size of the used cryptographic function in 
the random number generator output function. 

The testing is intended to obtain data from the output functions which generate random numbers. The 
output is then processed by statistical testing to analyze whether deviations from the expected ideal random 
number generator behavior are present.

The testing is conducted on the output received by callers via the /dev/random device which delivers data 
generated by the ChaCha20 DRNG.

The conducted testing can be summarized as follows. The device file /dev/random is accessed such that 
1000 blocks of data are created. The testing covers all block sizes ranging from 1 byte to 4096 bytes. The use 
of different block sizes shall verify that the code producing the random numbers can handle every request 
of any length correctly. It is assumed that when the test result for the block sizes up to 4096 bytes shows no 
deficiencies, larger block sizes are handled correctly as well by the deterministic random number generation 
process.

To validate the output, the generated data is subjected to the following analyses:

• The generated data is processed with the ent tool to obtain the Chi-Squared test result. If the Chi-
Squared test result is below 0.10 or above 99.9, the result is flagged for further analysis. This test is 
considered to be a search for a “smoking gun” as to whether the generated data does not exhibit the 
characteristics of an ideal random number generator. The calculation of the Chi-Squared value is 
considered an easy approach to identify data that exhibits the characteristics of an ideal random number 
generator due to the following: if the Chi-Squared test fails, then the data does not show the 
characteristics of an ideal random number generator. However, there could be false positives in the sense 
that the Chi-Squared result indicates the data is from an ideal random number generator where in fact a 
pattern is present. This applies in particular to the types of errors this set of tests wants to detect: 
programming errors leading to a pattern present in the output data. Thus, the Chi-Squared testing is 
deemed sufficient to find a “smoking gun” for further analysis.

• The generated data is compressed with the gzip2, bzip2, xz and lzma compression tools. These tools 
cover contemporary as well as state-of-the-art compression algorithms with high compression factors. 
The size of the original binary data is then compared with the size of the “compressed” file. The test 
would mark an error if the “compressed” file is smaller than the original size. If the compressed file is 
smaller, then patterns are present that can be detected with the compression algorithms. If a file is not 
compressible it is deduced that no pattern detectable by the compression algorithms is present. In this 
case, the “compressed” file must be larger because the compression algorithms add extra data to their 
output. If at least one of the compression operations is able to create a file with smaller size than the 
original file, the processed data does not follow the characteristics of an ideal random number generator, 
signaling a failure in the deterministic random number generating functions of the Linux-RNG.

• The tool dieharder is used to process the random data extracted from /dev/random. To apply all tests 
implemented in the dieharder statistical tool to the output of /dev/random, the following call is 
executed:
cat /dev/random | dieharder -a -g 200
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• After obtaining 5MB of data, the Test Procedure A defined in [AIS2031] is applied to the binary data 
produced by /dev/random. This Test Procedure A covers the Monobit test, the Poker test, the Runs test, 
the Long Runs test, and the Autocorrelation test. The test procedure A is implemented with the test tool 
test_proc_A.pl provided as part of the test suite.

8.1 Output of ChaCha20 DRNG

The output data from the ChaCha20 DRNG that backs /dev/random shows 8 out of 4096 data sets with Chi-
Squared values outside the allowed range. Again, when re-running the testing for the affected block size, the 
observed Chi-Squared value is back in the expected range, confirming that the initial outliers are false 
positives. Thus, the Chi-Squared test results do not indicate any programming errors in the ChaCha20-
DRNG feeding /dev/random.

The file compression test showed that all “compressed” files for all compression algorithms and all block 
sizes are larger than the original files. This result confirms the Chi-Squared testing result that no 
implementation error in the ChaCha-20 DRNG random number generation function can be detected.

All dieharder tests results are marked as “passed” except for 2 “weak” results. It is generally accepted that 
few “weak” results are present in the dieharder output as it runs many sensitive statistical tests. The nature 
of random numbers is that once in a while they may be flagged as weak by sensitive tests. No failed test 
result is present. This type of result is expected for data from an ideal random number generator. Thus, the 
dieharder test result confirms the initial test results.

All tests pass the test procedure A, indicating data exhibiting the characteristics of an ideal random number 
generator confirming the results of the previous tests.

8.2 Conclusion of the Output Function Testing

The testing has shown that the output function generating random numbers for /dev/random and 
dev/urandom produce data exhibiting the characteristics of an ideal random number generator. Thus, no 
implementation errors that would diminish the entropy in the random numbers were identified.
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9 Guidance For Using the Linux-RNG
Throughout the design description and the assessment whether the Linux-RNG conforms to NTG.1 or 
DRG.3 requirements, different constraints on either the use of the Linux-RNG or the compilation of the 
Linux kernel code are outlined. This section consolidates these assumptions and requirements to give a user 
a check list to verify whether the conclusions given in this document can be applied to his kernel.

• The kernel configuration option CONFIG_RANDOM_TRUST_BOOTLOADER must not be present. This 
ensures that any data provided by the boot loader during kernel initialization time is not assumed to 
have any entropy.

• Either the kernel command line option random.trust_cpu=0 must be set or the kernel compile-
time option of CONFIG_RANDOM_TRUST_CPU must be unset. This ensures that the data from CPU-
based noise sources like Intel RDRAND/RDSEED is not assumed to provide trustworthy entropy.

• Any caller of the add_hwgenerator_randomness interface function offered by the Linux kernel 
must be separately analyzed with an independent entropy analysis to show that the amount of entropy 
delivered via this interface is indeed present. This function is only invoked by device drivers for 
specialized cryptographic hardware which either is assumed to be not present or has its own entropy 
assessment demonstrating that the expected entropy rate is actually provided. However, there is the 
following exception: the network driver ATH9K WLAN uses add_hwgenerator_randomness if the 
kernel compilation option CONFIG_ATH9K_HWRNG is set to inject entropy into the Linux-RNG from 
the WLAN RNG. In case the Atheros WLAN hardware is present, this option is only allowed to be set if 
the Atheros WLAN hardware has its own entropy assessment.

All other kernel configuration options or kernel command line parameters do not affect the operation of 
the Linux-RNG or the entropy rate it delivers.

As of kernel version 5.18, only the base ChaCha20 DRNG can achieve all DRG.3 requirements. If more than 
one CPU is available (which is usually the case in contemporary hardware), the Linux-RNG interfaces are 
served by secondary ChaCha20 DRNGs that are seeded by the base DRNG. Although this does not imply a 
cryptographic weakness, the secondary ChaCha20 DRNGs do not fulfill the DRG.3.1 requirement. The 
following Linux-RNG interfaces assure seeding by a DRG.3-compliant base DRNG in case secondary DRNGs 
are used:

•

• /dev/random,

• getrandom system call with the flags field being zero,

• invoking the in-kernel get_random_bytes API call when the callback registered with 
register_random_ready_notifier was invoked,

• invoking the in-kernel get_random_bytes API call after the wait_for_random_bytes API call 
returns – note, service functions like the get_random_XXX_wait API call family where XXX is 
either u32, u64, int or long fall into this category.

In case the Linux kernel source code is to be modified, the following files must remain unchanged if the 
conclusions given in this document shall remain applicable:

• drivers/char/random.c must remain unchanged,

• lib/crypto/chacha.c must remain unchanged as it provides the ChaCha20 block operational, and

• include/crypto/blake2s.h together with lib/crypto/blake2s.c must remain unchanged as it provides the 
Blake2s implementation used for the entropy pool output function.
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Code invoking functions providing data with an entropy estimate to the Linux-RNG, such as via 
add_hwgenerator_randomness, must have their own entropy assessment backing the entropy rate 
used to feed the Linux-RNG.
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10 New Developments in Linux-RNG
The current document analyzes one particular version of the Linux kernel with its Linux-RNG 
implementation. The document always applies to the Linux kernel versions found at 
http://www.kernel.org.

For each new Linux kernel version, the current document is subject to review analyzing the following 
possible differences to the assessed newer Linux kernel version:

• All changes performed to the following files of drivers/char/random.c, include/linux/random.h, 
include/uapi/linux/random.h, arch/x86/include/asm/archrandom.h.

• Changes to the invocation of the entropy gathering functions documented in sections 3.5.2.1, 3.5.2.2, 
3.5.2.3, and 3.5.2.5. This assessment shall include new conditions applied to the invocation of these 
entropy gathering functions.

• Functions marked with either EXPORT_SYMBOL or EXPORT_SYMBOL_GPL implemented in random.c 
shall be assessed whether their invocation in the remainder of the Linux kernel has changed. These 
functions are interfaces exported by the Linux-RNG to other kernel parts.

Any changes identified for the aforementioned items are assessed in the following sections regarding their 
impact to the documented Linux-RNG functionality. The preceding sections are updated as necessary.

10.1 Linux Kernel 5.18.1

Previously assessed Linux kernel version: 5.17 – https://www.kernel.org/pub/linux/kernel/v5.x/linux-
5.17.tar.xz

Currently assessed Linux kernel version: 5.18.1 – https://www.kernel.org/pub/linux/kernel/v5.x/linux-
5.18.1.tar.xz

Assessment of changes: Compliance with NTG.1 and DRG.3 is lost. Only one very special use case of the 
Linux-RNG is DRG.3 compliant as outlined in section 5.2.1. The configuration requirements given in chapter 
9 apply unchanged.

10.1.1 Changes to the Linux-RNG Implementation

10.1.1.1 File drivers/char/random.c

Complete re-implementation. The changes are too many to list them individually.

10.1.1.2 File include/linux/random.h

Editorial changes without affecting the functionality are applied.

In addition, the new notification interfaces functions of random_prepare_cpu, random_online_cpu are 
added.

The asynchronous signal functions for achieving the fully seeded state are renamed: 
register_random_ready_notifier, unregister_random_ready_notifier.
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10.1.1.3 File include/uapi/linux/random.h

No changes.

10.1.1.4 File arch/x86/include/asm/archrandom.h

No changes.

10.1.2 Changes to Invocation of Entropy Gathering Functions

10.1.2.1 add_input_randomness

No change to the invocation in input_handle_event and thus no effect on the Linux-RNG.

10.1.2.2 add_interrupt_randomness

No change to the invocation in handle_irq_event_percpu, vmbus_isr and 
sysvec_hyperv_stimer0 and thus no effect on the Linux-RNG.

10.1.2.3 add_disk_randomness

No change to the invocation in scsi_end_request and thus no effect on the Linux-RNG.

10.1.2.4 add_hwgenerator_randomness

No change to the invocation in hwrng_fillfn and thus no effect on the Linux-RNG.

This function is still invoked in the ATH9K WLAN driver if the Linux kernel configuration option 
CONFIG_ATH9K_HWRNG is set.

10.1.3 Definition and Use of new Interfaces

The Linux-RNG adds the following interfaces:

• random_prepare_cpu, random_online_cpu: Those functions are invoked by the kernel when new CPUs 
are made available to allow the Linux-RNG to re-initialize the batched entropy management.

• The functions  register_random_ready_notifier, unregister_random_ready_notifier replace the 
register_random_ready_notifier, del_random_ready_callback without changing the properties of the 
functions.

• add_vmfork_randomness is added to trigger a reseed of the base ChaCha20 DRNG in case a spawning of a 
new virtual machine is performed by the kernel.
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Appendix A: Testing Aspects and Implementation
To reach conclusions about the quality of the random numbers produced by the Linux-RNG its behavior 
and its operation had to be monitored at runtime. For such monitoring the Linux kernel must be 
instrumented to allow for the reading of various parameters and state information without significantly 
affecting this data by the test approach itself.

The Linux kernel implements several tracing mechanisms which can be used during runtime. The following 
tracing mechanisms are available:

• SystemTap

• Ftrace

• Kernel debugger

• Manual instrumentation of the source code

• ptrace system call for analyzing system calls

In the following sections, the used tracing method for measuring the Linux-RNG is described. The rationale 
discusses also the impact of the tracing mechanism on the obtained results.

All tracing mechanisms have an impact on the timing behavior of the Linux kernel in general and the 
Linux-RNG in particular. As the Linux-RNG uses timing variations as the raw noise, all tracing mechanisms 
impact the Linux-RNG operation. Since that impact, however, is applicable to each measurement this 
impact is akin to the Linux-RNG operating on a slower CPU. Since the Linux-RNG is expected to deliver 
consistent results irrespective of the CPU execution speed, it can be concluded that the timing impact of the 
tracing mechanisms is visible in the measurements but its impact on the conclusions drawn from the 
measurements is negligible.

There are many possibilities to implement a tracing mechanism in the Linux kernel. Even when the Linux 
kernel would not provide any tracing mechanism, it is still possible to modify the kernel, compile it and 
start the measurements. Such an approach, however, has significant drawbacks due to the following base 
requirements for selecting a suitable tracing mechanism:

• The impact of the tracing mechanism on the measurements must be negligible.

• Measurements should be generated at runtime of a stock kernel such as delivered by Linux distributions. 
This means that the application of kernel patches which requires a re-compilation and reboot of the 
kernel would be detrimental. For example, kernels installed on target systems can readily be tested and 
measurements can be obtained using SystemTap. 

• The measurements should be repeatable on newer kernel versions without much effort.

Kernel Instrumentation

For the testing performed for this study, a kernel extension has been developed that hooks at well-defined 
code locations of the Linux-RNG. This approach has been chosen as this mechanism covers all 
aforementioned concerns, is easy to use and is automatable.

The kernel patch maintains a ring-buffer for each value that is intended to be extracted from the kernel. The 
ring buffer contains 1,024 32-bit words. A 32-bit data word is stored in the ring buffer by selecting the next 
unused word. If the ring buffer is full, the oldest value is overwritten.

The instrumentation patch provides one DebugFS file per ring buffer allowing user space to read the 
contents of the ring buffer.
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Data collection is performed when either user space requests data by reading the mentioned DebugFS files 
or by setting a kernel command line option. With the kernel command line option, all data is stored in the 
ring buffer that is received right from the very start of the kernel. When this kernel command line option is 
set, the data is collected in the ring buffer but when the buffer is full, collection ceases. With this approach, 
the collection of first event data during boot time can be collected.

The instrumentation exports callback functions which:

• Collect one 32-bit word, and

• Return an indication whether the data was collected.

These hooks are inserted at the following locations in the Linux-RNG code base:

• The function add_timer_randomness exports a 32-bit value that contains the 24-bit time stamp of the 
event and 8 bits holding the entropy estimation applied by the Linux-RNG.

• The function add_interrupt_randomness exports the 32-bit value of the CPU time stamp.

• The function try_to_generate_entropy exports the 1,024 time stamps that are generated by the operation.

The kernel instrumentation is provided as a kernel patch that is to be applied before compiling the kernel. 
Yet, its only dependency is to have the DebugFS file system support compiled. This file system is commonly 
compiled.

The ring buffer data can be directly read from the DebugFS files exported by the kernel instrumentation 
patch. Yet, to format the data nicely, a small user space application is provided. This tool reads the DebugFS 
files with a data size that is a multiple of 32 bits to prevent data truncation. The received buffer is written to 
STDOUT with one 32-bit word per line as decimal integer value.

The kernel instrumentation tool has been derived from the LRNG test framework.

For more details about the usage of the kernel instrumentation, see section 6.2.

Impact of Measurement on Test Results

The raw entropy gathering framework only have an impact on the timing behavior of the Linux kernel. The 
functionality of the entire kernel remains unchanged. Thus, only the aforementioned consideration 
regarding the timing impact is applicable.

Test Execution

The tests specified in chapters 6 and following use the test code instrumenting the Linux-RNG to collect the 
relevant data.

Besides following the instructions in the different sections regarding the test invocation, no additional 
operations are needed.

Listing of Used Hardware and Software

The testing was executed on the following hardware:

• Thinkpad T530 used for the native hardware early boot entropy tests documented in 6.3.3:

• 2 core CPU with two hyperthreads per core

• Intel(R) Core(TM) i7-3520M CPU @ 2.90GHz

• QEMU 6.1.0 used for the virtual environment early boot entropy tests documented in 6.3.1:
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• 19 virtual CPUs corresponding with the 10 cores and their 20 hyperthreads provided by each core of 
the host system

• Intel Core Processor (Comet Lake, no TSX)
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Abbreviation Description

CTR Counter mode as defined in SP800-38A

‍DRBG Deterministic Random Bit Generator (see SP800-90A)

DRNG Deterministic Random Number Generator

FIFO First-In First-Out

FIPS Federal Information Processing Standard

GCC GNU Compiler Collection – When referenced in this document, the C compiler 
component is referred to

HID Human Interface Devices

HSM Hardware Security Module

IID Independent and identically distributed

IOCTL Input / Output Control (Linux kernel system call)

LFSR Linear Feedback Shift Register

LSR Longest Repeated Substring (as defined in SP800-90B)

LSB Least Significant Bit(s)

MSB Most Significant Bit(s)

NDRNG Non-deterministic Random Number Generator

NUMA Non-Uniform Memory Access

RNG Random Number Generator

UUID Universally Unique Identifier
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